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I ntroduction.

§ 1. T h is  paper is primarily an attem pt to deal with certain points connected with 
the application to the Kinetic Theory of Gases of Boltzmann’s Theorem on the 
partition of energy in a dynamical system.

I t  is found by experiment that the ratio of the two specific heats of certain 
monatomic gases (e.g., mercury, argon) is If. If  we admit that the energy of these 
gases is distributed in the manner indicated by Boltzmann’s Theorem, then this 
theorem leaves no escape from the conclusion that the molecules of these gases must 
be rigid and geometrically perfect spheres. A similar difficulty arises in connection 
with other gases : the number of degrees of freedom which a consideration of the 
ratio in question leads us to expect a molecule of a gas to possess, is always less than 
the number which the spectrum of the glowing gas shows to actually exist. 
Further, Boltzmann’s Theorem excludes the possibility of the ratio of the two 
specific heats having any values except one of a certain series of values, whereas 
experiment shows that the ratio is not always equal to one of this series, although 
it is generally very near to such a value. Finally Boltzmann’s Theorem leaves no 
room for a variation of this ratio with the temperature, although such a variation is 
known to exist.

In the present paper I have tried to suggest a way by which it is possible to 
escape from this dilemma. As there is not sufficient known about the constitution 
of a molecule to enable it to be completely specified as a dynamical system, the 
paper is limited to the consideration of two imaginary types of molecules.

The conclusions arrived at are the same in each case. In the first place the 
distribution of energy which is given by Boltzmann’s Theorem is the only distri
bution which is permanent under the conditions postulated this theorem. And in 
the second place, this law of distribution may break down entirely as soon as we
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398 MR. J. H. JEANS ON THE DISTRIBUTION OF MOLECULAR ENERGY.

admit an interaction, no matter how small, between the molecules and the sur
rounding ether. That such an interaction must exist is shown by the fact that a 
gas is capable of radiating energy. In fact, Boltzmann’s Theorem rests on the 
assumption that the molecules of a gas form a conservative dynamical system, and 
it will appear that the introduction of a small dissipation function may entirely 
invalidate the conclusions of the theorem.* Thus we may regard the Boltzmann 
distribution as unstable, in the sense that a slight deviation from perfect conserva
tion of energy may result in a complete redistribution of the total energy, and it 
will appear that this new distribution of energy will lead to values for the ratios of 
the two specific heats which are not open to the objections mentioned above.

§ 2. A second difficulty, of a mathematical rather than physical nature, may be 
mentioned here, as it will occur incidentally in the course of the analysis. I t  is 
well illustrated by the consideration of an imaginary type of molecule which has 
been suggested by Boltzmann.! A loaded sphere, that is to say, a sphere of which 
the centre of gravity is at a small distance from the geometrical centre, will, for 
the present pur]:>ose, possess five degrees of freedom, and this is true, however, small 
r may be. The ratio of the specific heats of an ideal gas whose molecules are of 
this type ought accordingly to be If. If, however, r  actually vanishes, the molecules 
must be regarded as completely symmetrical, and possessing only three degrees of 
freedom, so that the ratio ought now to be If . There is thus seen to be a discontinuity 
when r  has a zero value, and this requires investigation.

I t  must be borne in mind that a degree of freedom, for purposes of Boltzmann’s 
Theorem, is not idendical with the usual dynamical degree of freedom. In the strict 
dynamical sense every sphere possesses six degrees of freedom, the principal momenta 
being the momenta of the centre of gravity in three rectangular directions and the 
three rotatory momenta about the principal axes of inertia. But if the sphere is 
perfectly smooth, rigid, and symmetrical, it is impossible to change the three latter 
momenta by the application of any forces which are at our disposal in the kinetic theory 
of gases, and for this reason the corresponding degrees of freedom must he left out 
of account, when applying Boltzmann’s Theorem. Similar remarks apply, in the 
case of the loaded sphere, to the degree of freedom which arises from rotation about 
the axis of symmetry, so that the loaded sphere must be supposed to possess five 
degrees of freedom, and not six.

* The matter may be looked at from a slightly different point of view as follows: If an interaction 
between matter and ether exists, no matter how small this interaction may be, the complete dynamical 
system will consist of the molecules of the gas, together with the ether, and must therefore be regarded as 
a system possessing an infinite number of degrees of freedom. Applying Boltzmann’s Theorem to this 
system we are merely led to the conclusion that no steady state is possible until all the energy of the gas 
has been dissipated by radiation into the ether. This application of the theorem may or may not be 
legitimate, out it is, I think, certain that no other application is legitimate.

t ‘ Vorlesungen fiber Gastheorie,’ Part II., p. 129.
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I t  is obvious th a t the degrees ot freedom which have been rejected do not in any 
way influence the motion of the sphere, whereas if they are counted as separate 
degrees of freedom, the series of states through which the sphere is made to pass by 
varying all the co-ordinates, is no longer such as to satisfy Maxwell’s condition 
of “ Continuity of Path .” (See § 11 of the present paper.)

PART I.

The Distribution of E nergy in a Gas of which the Molecules are

Loaded Spheres.

The Transfer o f  Energy caused Collisions.
§ 3. We may begin with the consideration of a gas of which the molecules are 

loaded spheres of the kind mentioned in the last section. These spheres are to be 
perfectly elastic, each of radius a, and the centre of gravity of each is to be at a 
small distance r  from the geometrical centre.

W e require to find equations giving the transfer of energy between the various 
degrees of freedom in such a gas. I f  we know the law of distribution of the various 
co-ordinates of the molecules, we shall be able, upon making the usual assumptions of 
the kinetic theory, to calculate the number of collisions which are such that the 
values of the variables, which are required to completely specify a collision, lie 
within certain specified small ranges of value. At each of these collisions the 
transfer of energy is the same, a function of the variables which specify the collision ; 
so tha t by multiplying this quantity by the number of collisions of the kind under 
consideration which occur during the interval , and integrating over all possible 
values of the variables which specify the collision, we shall obtain an expression for 
the transfer of energy during the time dt.

Let us denote the mean energy of translation of all the molecules at any specified 
instant by K, the mean energy of rotation by H. If  we regard the number of mole
cules in the gas as infinite, we may regard the quantities H and K as varying 
continuously with the time, and the expressions which have just been found for the 
transfer of energy will enable us to calculate and corresponding to any
state of the gas. The values of d il/d t, dK /dt will in general depend on r, , p (the 
density of the gas) and the coefficients which occur in the various laws of dis
tribution of co-ordinates.

If  we consider the case in which r — 0, we find that no transfer of energy is 
possible, so that dH/dt, dK /dt must vanish with r. We further notice that these 
differential coefficients must remain unaltered, if — r be written for r, so that, 
assuming for the moment that they can be expanded in ascending powers 
of r, we see that the lowest power of r  which can occur is r 2. We shall suppose

rto be so small that terms in r 4 may be neglected in comparison with terms 
containing r2.
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Since the total energy remains unaltered at every collision, we must have

dK /dt =  -  ;
it is therefore only necessary to calculate one of these differential coefficients.

§ 4. The state of a molecule at any instant will be determined by the following 
12 variables,

(i.) The co-ordinates in space of its centre of gravity as, z, and their time-rate 
of change u, v, w.

(ii.) Any three independent variables, e ,/ ,  , specifying the orientation in space 
of the molecule.

(iii.) tsfu ct3, ct3, the rotations about three principal axes, the last of these being 
the rotation about the axis of symmetry of the molecule.

Let accented letters refer to a second molecule ; then a collision between these two 
molecules, if possible, is completely specified by the whole 24 variables, but these 
are not all independent, and the collision will, as regards transfer of energy, be 
sufficiently specified by the independent variables

u — u \ v — v \ w — w \

^  1 ,  c t 2> c t 3> 3>

and six other variables to determine the direction in space of the axes of the mole
cules, and the line of centres.

Let the variables after collision be distinguished from those before collision by 
placing a bar over them, then we can from the ordinary equation of impact calculate 
the value of

c2 +  c'2 -  (c2 +  c'2)

where c2 =  id +  ir  -f- w2, in terms of the variables before collision.
This expression must be a quadratic function of the velocities, and et3, vt's cannot 

enter. I f  we write

(u -  u f  +  (v -v ' f  +  (w -  w 'f  =  V2,
t*!3 +  OT22 =  EX3,

it is easily seen that the expression must be of the form

cs +  C'2 -  (c2 +  c's) =  otjV3 +  ft  (CTJ +  ra'2) ................... (i-).

where ax, /32 are functions of the six variables determining orientations in space, 
and aie algebraical functions of t, in which the lowest power is ?’2.

400 MR. J. H. JEANS ON THE DISTRIBUTION OF MOLECULAR ENERGY.
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§ 5. In calculating the number of collisions of this kind which are to he expected 
in the interval of time dt, a consideration enters, which does not enter in the simpler 
case in which the spheres are symmetrically loaded.

From the co-ordinates of the two molecules just before collision, we can trace back, 
as far as the previous collisions, the paths by which the molecules arrived at this 
position. If these paths are such th a t the spaces occupied by the twTo molecules, at 
any two corresponding points of these paths, are found to overlap, then it is clear that 
a collision of the kind we are investigating can only occur, either when the same two 
molecules have previously collided, or when one of them has collided with a third 
molecule within a certain small interval previous to the collision in question. In 
either case it would be wrong to calculate the probability of such a collision upon the 
assumption tha t the molecules of the gas are, in Boltzmann’s sense,

When, however, terms of degree higher than r~ are neglected, it will be legitimate 
to ignore this consideration altogether. For the number of collisions to which it 
applies will vanish with r, so tha t if equation (i.) be summed over all collisions, the 
terms on the right-hand side which are influenced by this consideration will be of 
a higher order in r  than r2, and may accordingly be inaccurately calculated, without 
invalidating the result as far as terms in r~.

§ 6. W hen we agree to ignore this consideration, we may at once average equation 
(i.) over all values of the six variables of orientation. The probability of these 
variables having specified values at a collision is not independent of the velocities 
of the collision, but will be the same for all collisions such as we are now considering, 
in which these velocities have specified values. In this way we find that the mean 
increase in c~ +  c'2 at a collision at which the velocities are v, w, ct, u', v', ct', is 
of the form

r 2{ajjY2 +  /?2(ct2 +  ct'2)} -f- terms of a higher order in . . . (ii.),

in which a2, fi.2 are constants.
Now if we suppose that the gas has reached its present state through a series 

of natural processes, the law of distribution of velocities will depend only on 
c2 and zs~. In the case in which r  =  0, this law is known to he

e~Im*f{rs)du dv ........ ............................... (iii.).

Hence in the case in which r  is small, it may be taken to be

F (c, 7s) du dv dw drs............................................... (iy-)>

where F is a function of which the coefficients involve v, hut is such that (iv.) reduces 
to (iii.) when r  =  0.

2 4
* Direct calculation shows that the values of a?, /L are = — ($z ~  where k is the radius of

gyration of a molecule about a line perpendicular to the axis of symmetry,

VOL. CXCVI.— A, 3 F
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Calculated upon the usual assumption, the number of collisions which occur in a 
volume fl of the gas and within a time dt, between pairs of molecules of which the 
velocities lie within a range du dv div dm du' did  surrounding the values
u , v, iv, zs, u ' , d ,  id, m,  is

7 raVdt^  ^  F (d, m')dudv dm did dm'.

Hence referring to expression (ii.) we see that the total increase in the translational 
velocity of the gas, in time cIt, i s

F ( e > ' ) h V ! +  m .™ -  +  »'*) + ............. ]

du dv dw dm dd  did dm'.

If  we reject all terms of a degree higher than ?*3 in this expression becomes

r° \IB " f(f / ( * r)/(m )  +  &(*/- +  OT'2)] du do dw dm du' dv’ dw dm'

. . . .  (r.).

7TCfidt
~2TT

Now the functional form represented by f  is unknown, but the part of the above 
integral which contains a2 depends only upon j j ( m )  dm  and this can be seen to he 
proportional to p and to involve k.Let us denote \ f ( m ) d m  by pi, so that I is a 
function of h only ; then the part of (v.) which contains a.2, contains I~ multiplied by
7T<X~dt

2D
r 3 and a function of It.

The part of (v.) which contains /32 depends on I and also on J / ‘(ct) ct3 dm. If  we 
write J f  (m) m1 dm =  p IT  (so that is the mean value of m~ taken over 
all the molecules of the gas), then this part of (v.) will be FT  multiplied by

r3 and by a function of h.20 J
Hence determining the functions of h from a consideration of dimensions, we find

=  < hfnr* +  ...........................................(vi-)>
in which a3, (3Z are constants ; or in terms of H and K,

dK
dt apK3/2 +  /3pK12H # ..................................... (vii.),

in wliich the constants a, do not in any way depend upon the law of distribution 
of velocities.

* Using the values for a, [3 given in the footnote on p. 401, we can find for a, (3 the values

a = 32 aV2
9 niK2 * 3m

In this way we can prove the relation H == |- K, instead of

_  16 a2r2 . / 2tt 
3 w«K2 * 3m‘ 

assuming it.
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In Boltzmann’s steady state, dK /d t =  0, and IT =  §K, since the energy is equally 
divided between the five degrees of freedom. This leads to the relation

a =  “  3 A
and equation (vii.) may be written

dX _
M (H -  | K ) ..................................... (viii.).

The rate of variation of II on account of collisions is therefore given by

' f  =  -  /W K  (II -  I K ) ................................ (ix.).

Introduction o f Dissipation.

§ 7. I f  the changes in the values of II  and K arise solely from collisions, the 
equations ju st found will enable us to trace these changes, starting from any initial 
values. Let us, however, suppose that there is a second cause of change in H 
and K ; suppose th a t the angular velocity ct is retarded by a frictional reaction 
between the molecules and the surrounding medium, the amount of this retardation 
being ear. I t  is not suggested that a reaction of this type exists in nature, but this 
reaction may be taken as being the simplest reaction possible, just as a loaded sphere 
has been taken as the simplest dynamical system which will serve our purpose. Due 
to a frictional reaction of this kind, the mean rotational energy H will suffer a 
decrease of amount 2eII per unit time.

The equations expressing the rates of change of II and K will therefore be

' f  =  / W K ( H  -  I K ) .......................................... (x.),
jnrr

~u =  -  2«II -  / W K  (H -  |K ) .......................... (xi.).

§ 8. A steady state is now impossible, on account of the dissipation of energy 
which takes place. If, however, we suppose the translational energy to be in some 
way increased a t such a rate as exactly to counterbalance the loss of energy, the gas 
will rapidly assume a steady state given by =  0, or, by equation (xi.),

2eH +  £ p v / K ( H - f K )  =  0 ............................... (xii.).

The value of II corresponding to a given value of K is therefore

it  =  |i<y( i +  ..................................

Hence if e, /3, K have values such that e is very great in comparison with /3^/K, 
then H will be very small in comparison with K. 1 he rate at which the external 
agency introduces energy is 2eH, and this may be made very small by supposing e to 
be very small, although great in comparison with £v/K . If this agency is removed

3 F 2
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the state of the gas will only change very slowly, so tha t the state specified by 
equation (xiii.) may be appropriately described as the “ approximately steady” state. 
When II vanishes in comparison with K, the equation giving this state takes the 
simpler form

cH =  ifip K 32 (xiv.)

The conditions which have been found to be necessary in order that this state 
may exist, are that e, /3 should be small, and that K should be so small that

is very great. Thus the steady state will be possible for all temperatures below6
/V k

a certain temperature, namely, the temperature at which /3^/K begins to be com
parable with e. Below this temperature H vanishes in comparison with K, and the 
rate of dissipation of energy is a small quantity of the second order.

I t  follows that if experiments are conducted at temperatures so low as to be 
below this critical temperature, no value of y  can possibly be observed except

y  — i f  (xv.).

At higher temperatures, there is no definite ratio between H and K which tends 
to establish itself. In fact, if experiments are conducted with a view to determining y, 
the value observed will depend on the past history of the gas and the duration 
of the experiment, so that y  may have any value between I f  and if .

Thus it appears that if, under the conditions we are now considering, a consistent 
value is obtained for y  from experiments on the gas in question, this value can be no 
other than If, and the temperature at which the experiments are conducted must 
be what has been referred to as a low temperature. I t  must be particularly noticed, 
that this temperature is only low relatively to the other temperatures considered : no 
knowledge as to its absolute value is possible so long as e and remain unknown 
quantities. If, however, for the moment, we assume that the present molecules are 
a fair representation of the molecules of an actual gas, and that the dissipation of 
energy caused by our assumed frictional reactions supplies a true analogy to radia
tion of energy in nature, then we can form some estimate as to what a “ low” 
temperature must mean. I t  is a temperature at which H, and therefore the 
radiation, is inappreciable ; that is to say, it is a temperature at which the gas is 
i ioi l- incandescent.

Ihe Distribution o f Energy in the approximately Steady State.
§ 9. To sum up, it appears that if we are willing to admit that our present dynami

cal system supplies a sufficiently good analogue to a real gas, then the introduction 
of a dissipation function will supply an explanation of the difficulties mentioned in 
the introduction, at any rate for the case of a non-luminous gas. Part II. of this 
paper consists of an effort to show that our present system is a fair analogy, if not
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of an actual molecule, yet a t any rate, of a dynamical system which contains all the 
features we believe to he essential to a molecule.

Referring back to equations (x.), (xi.) and (xiv.), it is now clear that, for a lion- 
luminous gas, the equations determining H and K will be

dK /d t =  -  f/fyK 8 2 ..................................... (xvi.),
and

€H  =  i/3PK ^ ........................................... (xvii.).

Equation (xvii.) is the relation between H and K which must now replace the 
equation of Maxwell and Boltzmann, viz. :

H  =  |K .

It therefore appears that, m the present case, the total radiation will be propor
tional to K3 -, and in the more general case discussed in Part II., the radiation will be 
seen to increase still more rapidly with the temperature. Thus it is easy to see 
how it is possible for the total radiation to increase very rapidly near the temperature 
ol incandescence, whereas if we supposed the energy divided in any invariable ratio 
between the different degrees of freedom, it is difficult to see how the radiation could 
lie anything but directly proportional to the temperature.

Extension o f the Theory.

§ 10. I t  is possible, under certain conditions, to apply the above methods to a 
more general type of molecule.

Let the energy of the molecule consist partly of translational energy, and partly 
of various kinds of internal energy, potential as well as kinetic. The only case 
considered will be that in which the internal energy is sm all: the potential energy 
will therefore arise from small oscillations about a position of equilibrium, and these 
oscillations will be of definite period, and such as may be supposed to result in the 
emission of light possessing a line-spectrum. Thus the total energy corresponding 
to any such principal mode of vibration, will, when averaged over a large number of 
molecules, be half potential and half kinetic.

I t  is necessary for the success of the present method that the probability of a 
collision between two molecules should depend solely on their relative velocity, and 
not on their internal co-ordinates. Now a rotation is to be regarded as internal 
energy, and a rapid rotation will be equivalent to an increase of volume, and will 
therefore increase the probability of a collision unless the molecules are spheres of 
invariable radius, and of which the centres move in straight lines. Thus the 
molecules must either he spheres of which the centre of gravity and the geometrical 
centre coincide, or else as in the former case, they must differ by so little from this, 
that the divergence has no effect on the final result ( i f  § 5).
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We shall further suppose for the present that the internal energies are only 
slightly altered by collision, as was the ease in the former problem.

The law of distribution of internal energy will now be independent of the velocity 
of translation, so that the mean value of the internal energy of any specified 
mode, will be the same whether the average is taken over all collisions or over all 
molecules.

The same notation as before will be used in connection with the motion of trans
lation. The energies of the various internal modes will be denoted by . . . .
and their mean values taken over all molecules by E l5 E 2 . . . . I f  tlt r l are the
potential and kinetic energies of which the sum is ex then the mean value of tx will 
be P i .

We begin by calculating the increase at any single collision in (c3 +  c'3), 
(c1 -f e'j), &c. Each of these quantities will be a quadratic function of the velocities 
concerned, and is symmetrical as regards the two molecules. We next assume the 
law of distribution of translational velocities to be

cf> (u, v, to) —

and average the values we have found over all collisions, the procedure being 
exactly identical with that already followed in the former problem.

For given velocities we arrive at an equation similar to equation (i.), p. 400. It is 
to be particularly noticed that the translational velocities can only enter through 
the term V3. We now continue in the manner of § 6. The factor V again occurs 
multiplying every integrand, and giving rise to the term X/ K  in the final result.

By this means we arrive at equations similar to equations (viii.) and (ix.), p. 403, 
giving the rate of change of K, E 1} E 2, . . . arising from collisions. By what has 
been already said, these must be of the form—

cfEJdt =  p v/K {a11E 1 -J- cq2E 2 4* • • 4" 01K}

dE Jdt =  p v/K {a.21E 1 -j- a 22E2 

and similar equations, together with

dK./dt — -f- c2E2 -j- . . . -j- cK} . . . .  (xviii.).

I t  is here assumed that a specified value of any internal velocity is just as 
probable as the equal negative velocity, otherwise the mean value of products of 
different velocities could not be supposed to vanish. The equations determining the 
steady state are

an ^ i 4- a i2E2 + . . • . +  £qK — 0,
a 21-̂ l c<22-̂ 2 +  . • • +  £>2K =  0,

P i  4* < P 2 .-f- <rK — 0 .

406 MR. J. H. JEANS ON THE DISTRIBUTION OF MOLECULAR ENERGY.
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These equations are not independent; when they are added together the resulting 
equation vanishes identically in virtue of the fact tha t the mean total energy is, 
under all circumstances, unchanged by collisions.

Hence the equations can all be satisfied when the variables E 1} Eo . . . K are in a 
definite ratio. The distribution of energy indicated by this ratio will therefore he 
permanent, and since the equations which determine it are linear, it will be unique. 
This is the distribution discovered by Boltzmann, in which the energy is equally 
divided between the various degrees of freedom.

Continuity o f Path.

§ 11. Any of the coefficients in the above system of equations may vanish ; so tha t 
it will be possible for the equations to fall into two groups, in such a way that no 
variable occurs in both groups. The motion will in this case be steady provided all 
the variables of the first group are in a given ratio, and all the variables of the 
second group are in a given ratio, but there need be no fixed ratio between the two 
groups.

Thus the total energy of the first group will be divided according to Boltzmann’s 
Law, and the same applies to the second group, but the distribution between the two 
groups will not follow this law.

This is the analytical expression of Maxwell’s condition as to “ Continuity of 
Path.”*

The Two Kinds o f Internal

§ 12. Let us suppose, as before, that certain velocities are subject to a retardation 
proportional to the velocities. The mean energies arising from these degrees of 
freedom will be denoted by F x, F.,, . . . , the letters E L, E2. . . .. being reserved for 
those energies which are not dissipated by friction.

The system of equations (xviii., p. 406) must now be replaced by

dEfd t  — p \/K. {2c(1sE4 -f- S^ijFj T* friH},

dVJdt =  Pv/K {^rlsEa +  SruFs b'JK.} — €iF x,

dK /dt — p\/K {2csE, +  2c/F, +  <?K}....(xx.).

If  we suppose that at a collision only a small amount of energy can be exchanged 
between the F modes and the remaining modes, then all the coefficients p, q, b', and 
c will be small.

I t is immediately obvious that equations (xx.) may be treated exactly as equations

* Maxwell, ‘Camb. Phil. Soc. Trans.,’ vol. 12, p. 548; or ‘Collected Works,’ vol. 2, p. 714.
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(x.) and (xi.) were treated. At low temperatures the ratios F/E all tend to zero, and 
the equations may he replaced by

c?E Jclt =  pVK f2cq*E* -1- ZqK},

p y / K { t q ^ . +  t r u-F. +  K) -  e1Fl =  0,

and dK /dt == p \ /K  { tc $ ,  +  e K ] ...........................................(xxi.).

MR. J. H. JEANS ON THE DISTRIBUTION OF MOLECULAR ENERGY.

A steady state would be possible, if we could simultaneously satisfy all equations
of the type,

2 a lgE* +  &iK =  0,

together with 2c*E* -j- eK — 0 ...........................................(xxii.),

by values of K, E ]? E 2, &c., which were different from zero.
Let us use S to denote summation with respect to degrees of freedom. Then since 

we know the solution of equations (xix., p. 406) we can, by substitution, arrive at a 
system of relations between the coefficients.

Making allowance for the alteration in notation (cf. equations xx., p. 407) these 
relations can he written in the form

Scq* -j- S^j* -j- 3 =  0,

and Sc* +  Sc'* +  3e =  0.

If  we attribute an amount of energy X to every degree of freedom, we have

^cqsE* -f* — X (Scq* -f- 3?>j) — — XSpj4

and 2c*E* 4* eK =  X (Sc* -j- 3e) =  — XScr*.

Thus the equations (xxii.) are very approximately satisfied, in virtue of the 
smallness of the p  and c' coefficients. The solution we have found will therefore 
give a, state which is approximately steady.

§ 13. Thus at a sufficiently low temperature the energy of the gas which we have been 
considering will distribute itself in such a manner that an equal amount of energy 
will correspond to each degree of freedom which is not retarded by friction. The 
amount of energy corresponding to a degree of freedom which is retarded by friction 
will be vanishingly small. The amount of such energy is given by the equations,

Fj =  p ~ -  {2<7„Ea +  b\K}.... (xxiii.).
ei

If the degrees of freedom included in the E’s are n in number, and those counted in 
the F’s are m in number, it is obvious that the ratio of the specific heats must he 
taken to be

2
7 =  1 + n + 3 (xxiv.),
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whereas Boltzmann’s theorem would lead to

y = i + 2’ ■■ ■ ' - • 
m +  n +  3

The equation (xxiv.) will only hold in the limit when the temperature 0 =  0. At other 
temperatures y will have a slightly different value, since the F energies cannot be 
entirely neglected. Our results as before only hold up to the temperature at which 
the gas begins to emit an appreciable amount of radiant energy, and this temperature 
may be supposed to be somewhat above the point of incandescence.

Up to this point, F t, F 2, . . . will always be in the same proportion to one 
another, so th a t the brightness of the various lines in the spectrum will be in a 
constant ratio, each being proportional to 03/2.

§ 14. W e have been working on the assumption that there is a complete absence 
of frictional forces acting on K, and on E l5 E 2, . . . .  These assumptions, however, 
are not necessary. In the steady state we have from equation (xxiii.),

&
fi

where /3X is a quantity which depends only on the construction of the molecule.# The
q  a  

temperatures which have been considered have been those for which — ̂ /K , —y/K,
e l  e 3

&c., are all very small. But if for any single degree of freedom, say that for which 
the energy co-ordinate is F 1} either e1 is exceptionally small or J3{ exceptionally great, 
the range of temperature will he greatly restricted on this account. At temperatures

Q _ ^
at which — y /K  is large while the remaining similar quantities are small, it is clear

ei
tha t F! must be treated as an E co-ordinate.

At zero temperature all the energy co-ordinates to which friction corresponds 
must be regarded as F co-ordinates. As the temperature increases we must suppose 
these co-ordinates one by one to change from being F co-ordinates, and after 
occupying a position intermediate between that of an F and that of an E co-ordinate 
to finally become E co-ordinates. If  there is a co-ordinate for which e is extremely 
small, or /3 very great, that is to say, a co-ordinate corresponding to a degree of 
freedom which is only very slightly retarded by friction, or to one from which energy 
passes freely, then such a co-ordinate will becpme an E co-ordinate at such a low 
temperature tha t it may be regarded as always being an E co-ordinate. *

* It may be noticed that the value of supplies a measure of the facility with which energy is 
exchanged between the Fi mode and the other modes. If — 0, it is impossible for such an exchange 
to take place, and the Fi mode does not satisfy the condition of continuity of path. Thus if friction 
dissipates the energy of the Fi mode, the value of Fi will finally be zero. If, however, we have = 0, 
together with €i = 0, the value of Fi is indeterminate. The rotation of the loaded sphere about the axis 
of symmetry supplied a good illustration of a mode of energy for which (3 = 0.

VOL, CXCVI,----A, 3 G
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Variation o f y  with Temperature.

§ 15. Thus our conclusion is that it is not permissible to count the degrees of 
freedom ; they must be weighted as well. We can write

r  =  1 +  3 + 2a, ’

where as is the “ weight ” of the sth degree of freedom. So long as —f K  is small,

we may put as =  0. When this quantity is very great, either owing to the greatness
R _

of K or the absence of eS) we put as =  1. For intermediate values of will

be a proper fraction, the value of which depends not only on the temperature but 
also on the series of changes through which the gas has passed.

As a consequence of this, it is clear that y  may be expected to vary with the 
temperature, and that it is no longer restricted to having one of the values given by 
the formula 1 -f- 2jn. I t  would be going too far to expect any agreement with 
experiment at present, since we are considering a purely arbitrary type of molecule 
such as certainly does not exist in nature.

Case o f a Diatomic Molecule.

§ 1G. As an illustration of the foregoing theory, we may examine the case of a 
molecule which is composed of two atoms held together by an attractive force. The 
atoms can execute internal vibrations giving rise to the emission of l ig h t; for these

Q _
vibrations we can suppose — V/K  to be very small, so that =  0. The molecule can

rotate about its axis of symmetry, but we can suppose ft to be zero, so that again 
a — 0. For the rotation about the two remaining axes ft will be large, so that we 

may take a =  1. We can suppose that the oscillations of the atoms as a whole about 
their position of equilibrium are dissipated by radiation so that a =  0.#

This leads us to the value y — If , a value which it is impossible to arrive at by 
means of Boltzmann’s theorem when we are considering a molecule which is made up 
of two separable parts, but which is nevertheless known to be the true value for many 
diatomic gases, such as hydrogen, nitrogen, and oxygen. If  the present theory in *

* Radiation of this kind would give rise to definite lines in the spectrum of a frequency which might, 
and probably would, be very different from the frequencies of the light vibrations given out by the 
internal vibrations of the atoms. In this connection it is of interest to remember that experiments with 
Hertzian vibrators have demonstrated the existence, in certain substances, of free periods of which the 
frequency is only about 1/1,000,000th of the frequency of the sodium lines. (P. Drude, ‘ Wied, Ann /  
vol. 58, p. 1; vol. 59, p. 17 ; vol. 64, p. 131.)
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any way corresponds to the facts, the molecules of these gases must possess a 
symmetry similar to tha t possessed by figures of revolution.

PART II.

The D istribution of E nergy in a Gas of which the Molecules are of a

more General Type.

Statement of Problem to be Discussed.

§ 17. Having discovered, by means of the simple dynamical illustration discussed 
in Part I., what sort of results are to be expected, it now becomes possible to examine 
the case in which the • molecules form a more complex dynamical system, and as this 
may be done by an entirely different method from that previously followed, it is now 
possible to remove the restrictions which it was previously found necessary to impose 
on the nature of the molecules.

The molecules are, as before, supposed to he all exactly similar, but intermolecular 
forces are no longer excluded, and the radiation is supposed to be of a more general 
type.

Let us suppose tha t each molecule is a dynamical system, possessing in itself 
h -f- n degrees of freedom in addition to the freedom of the molecule to move in 

space. There will therefore he 2 (h-f  n) +  3 co-ordinates required to specify the 
condition of a molecule apart from its position in space, and 4 -f -j- 8 quantities 
are required to specify a collision.

The co-ordinates of position of any molecule will be

x, y, 2, the co-ordinates of its centre of gravity referred to axes fixed in space,
V\> P'2> • • • Pn, the co-ordinates which do not occur in the expression for the 

potential energy ; as, for example, the co-ordinates which determine the 
orientation of a rigid body.

rq, r 0, . . . rK, the co-ordinates which do occur in the expression for the 
potential energy.

The co-ordinates of velocity will he

tq, u .2, U'6 the time-diflerentials of x, z.
2 l ,  ^ 2 ’ • • • 55 5 5 5 5 j P l 5  5 * • * j P « *

5 S o ,  ’ • • S *  5 5 5 5 5 5 ^ 15 '^ 2 >  * * *

We shall write c3 for t r  +  v3 -f- tc3, and it will frequently be necessary, for the 
sake of brevity, to denote all co-ordinates of the same type by a single representative 
letter without a suffix.

Thus f(p )  =  / ( P l, • • •
(lu =  dul du2 3, &c.

3 G 2
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We shall assume that these co-ordinates are principal co-ordinates of the system, so 
that both the kinetic and potential energies will be the sums of squares. We may, 
in fact, write

2V =  cpq2 +  c2r22 +  . . . +  *

2T =  me2 4" 2Q +  2S
where

2Q =  bflf-f b,q^ -f . . . +  bnq,?

2S =  dYs* -f cZ2s22 4* • • • +  d/tsn2.

We shall suppose the oscillations of the s co-ordinates to be so small as to be 
isochronous, and in this case the c and d coefficients will be constants. Since the r 
co-ordinates are to he very small, the “ configuration ” of a molecule may be supposed 
to be determined by its p co-ordinates.

W ith a view to simplifying subsequent analysis, we shall assume that the s also 
are constants. I t  will be seen that the character of our results is not materially 
modified by this simplification, and the assumption is, of course, legitimate if we 
suppose the molecule, except as regards small oscillations, to behave like a rigid 
body, the atoms never moving far from certain equilibrium positions. We shall 
suppose that the vibrations of the molecule result in a radiation of energy, and we 
accordingly assume a dissipation function G. This will be supposed to be a quad
ratic function of the s co-ordinates with constant coefficients ; it will not in general 
be reducible to the sum of squares. The existence of G implies an interaction 
between matter and ether. The assumption that G contains no terms in u or q is in 
strictness only legitimate if we suppose the u and q velocities to be uninfluenced by 
the ether, but it is easy to see, as in § 14, that even if these velocities are acted upon 
by the ether, the neglect of these actions is of no importance so long as they are 
sufficiently small.

We have spoken of T and V as kinetic and potential energy, but there is no 
reason why these energies should not be regarded as electro-magnetic and electro
static energy, or indeed as energy of any other kind, provided only that it is always 
possible to deduce the equations of motion from the energy function by Lagrange’s 
method. But it is probably best to regard the system just specified as simply a 
dynamical system in the strictest sense, this system being capable of illustrating all 
the properties which experiment shows to be possessed by a molecule.

§ 18. Corresponding to a collision in the case of two spheres, we shall suppose that 
it is possible for an action to take place between two molecules, and this action will 
be spoken of as an “ encounter.” For the present, it is not necessary to specify the 
exact nature of an encounter, but it will be supposed

(i.) that the duration of an encounter is infinitesimal, so that an encounter 
causes no direct change in the co-ordinates of position of a molecule,
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(ii.) th a t an encounter is similar to an impact in the former problem, in tha t i t  
may or may not entirely change the translational velocities of the two 
molecules concerned, but tha t the internal velocities are only changed by a 
small amount.

The sudden increase in any quantity £ consequent on an encounter will be denoted 
by A£.

In virtue of the above assumptions

A p — 0, Ar — 0,

A q and A $ are small, and Aw will in general be comparable with
A “ collision ” will be a special case of an encounter, and may be described as 

follows. Suppose that every molecule is surrounded by a small sphere, of which the 
centre coincides with the centre of gravity of the molecule, and which moves as 
though it were rigidly attached to the molecule. The radius of the sphere is not 
yet fixed, but it must be such that the sphere entirely encloses the m atter of which 
the molecule is composed. Then a collision will be defined as an encounter which is 
such th a t the spheres of the two molecules which are engaged, in tersect; the 
“ duration ” of a collision will be taken to be sufficiently long to include the whole 
interval from the instant at which the spheres first intersect to the instant at which 
they separate. The assumptions as to the nature of the gas, which are usually 
expressed by saying that the gas is molekulctrand that the number of 
collisions in which three or more molecules are engaged, is infinitely small in com
parison with the number of binary collisions, will be replaced by the following 
assumptions :

(i.) The duration of a collision is so short, that the positional co-ordinates may be 
treated as constant throughout the collision, while the velocity co-ordi
nates are abruptly changed.

(ii.) The chance of any molecular sphere intersecting two other spheres at once, 
vanishes in comparison with the chance of its intersecting one other sphere.

(iii.) The chance that a molecule A is found with all its co-ordinates within certain 
small ranges of values, which are such that the sphere of the molecule does 
not intersect any other sphere, depends solely upon the co-ordinates of the 
molecule A, and upon the potential upon A of the field of intermolecular 
force ; it does not depend upon the arrangement of the other molecules.

The Characteristic Equation.

§ 19. Starting from the state of the gas at the time 0, we can arrive 
at the state after an interval dt, by imagining the following succession of 
events. Suppose in the first place that each molecule is allowed to move under
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no force except its own internal forces for a time and let all the collisions 
which would occur in this time be supposed to occur. After this imagine the 
molecules divided into pairs in every possible way and suppose an encounter to 
occur between the two molecules of every such pair. The duration of the encounter 
is to be d t ; during it the co-ordinates of each molecule are to change only on account 
of the forces of the encounter; that is, on account of the intermolecular forces 
existing between the two molecules under consideration. These encounters are to 
take jjlace consecutively, not simultaneously.

I t  is easily seen that each molecule has now been acted upon by exactly the same 
forces by which in the actual course of events it would have been acted upon in the 
interval dt.Hence, since there is no limit to the smallness of the final state of 
the gas is independent of the order in which this series of events takes place, and is 
identical with the state in which the gas would have been found if the forces had 
acted simultaneously.

Two points deserve attention in connection with this argument. Firstly, it might 
he objected that the changes in the co-ordinates of molecules which experience an 
actual collision are not additive, inasmuch as one of these changes is not infinitesimal. 
It is, however, clear that there is no necessity to take the changes into
account at all in the case of these molecules, for the number of these molecules 
vanishes in comparison with the total number when dt is made to vanish. Secondly, 
it is true that the number of molecules within any specified limits will not always 
consist of the same individual molecules. But it is a fundamental assumption of the 
kinetic theory that any N molecules which have nothing in common except that 
certain co-ordinates have specified values, will behave exactly like N other similarly 
conditioned molecules.

We can therefore reduce the continuous changes of the co-ordinates of molecules 
which arise from the action of intermolecular forces, to a series of encounters of the 
kind described in § 18.

§ 20. To completely specify an encounter, we recpiire the values of all the co-ordi
nates enumerated in § 17, of both molecules. I t  will, however, be convenient to 
write

n  f
X —  X  —  X,

with a similar notation for y, z, w, v, w, and to specify a collision by the values of
x", . . . instead of the values of x '. . .

As regards the law of distribution of the various co-ordinates, we notice that 
whatever the values of the q, r, s, and u co-ordinates may be, the probability that the 
P co-ordinates lie within the limits dp may, in the absence of external forces, be

taken to h e f(p )  dp where ^ f ( p )  dp — 1. Since the internal energy is only slightly 

changed by encounters, we shall again suppose that the distribution of internal
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energy is independent of the translational energy, and hence we may suppose that 
the number of molecules per unit volume which lie within a range dr is

<I> ( u)F ( q, r , s) f  ( ) dq dr ds du,

or, as it will be frequently written,

<3>F f  d p d u ,
dV  being written for dq dr ds.

We shall suppose tha t the gas has adjusted itself so that the distribution of the 
energy of translation is the permanent distribution. Thus at a point at which the 
potential energy of a molecule is xfj we shall have

=

As we are going to admit the existence of inter molecular forces, the potential of a 
molecule at a point will depend on the co-ordinates of the molecules as well as the 
position of the point. Thus xp will in general be a function of , p  and r.

Let molecules of which the co-ordinates lie within limits c/P da be called
molecules of class a ; if the limits are dpdV let the molecules be described as 
molecules of class /3. Each of these classes will consist of a number of molecules 
which is indefinitely small in comparison with the total number of molecules 
present.

At any moment, let us imagine all the molecules placed in position, except those 
belonging to one or other of these two classes. Let them produce a field of force such 
that if a molecule of class a is placed with its centre at the point x, y, z, then 
the potential of this molecule will be Q.

Then the probability that a molecule of class a will be found with its centre within 
an element dx dy dz at x y zis

e-k(mc*+2Q)Yj'dp c/P du dx dy dz.

Hence the total number of such molecules to be found in the whole unit volume
may be obtained by integrating this expression over the whole volume, and may be
written as v

Na == e~h{mct+2*)¥ f  dp ....... (i.),
where

e~2K* =  | j |  e~2h dz........(ii.).

The integral is taken over the whole unit volume, since the integrand is supposed 
to vanish if the point x, y, z is such that the centre of a molecule of class a. cannot 
be found there.

The quantity 'F will be called the mean intermolecular potential for a molecule of 
class a. I t  is clearly a function of all the coefficients which occur in the law of 
distribution as well as of the co-ordinates of molecules of class a. If we remember

MR. J. H. JEANS ON THE DISTRIBUTION OF MOLECULAR ENERGY.
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that the r  co-ordinates are supposed to be very small, it is clear that it will be 
sufficient to imagine that 'F is a function of

(i.) h,on account of the way in which this coefficient enters in equation (ii.),
(ii.) the coefficients occurring in f{p )  (these have, however, already been 

assumed to be invariable),
(iii.) the pco-ordinates of molecules of class a.

Thus, for our purpose, xpis a function of and only.
Fixing our attention on any one of these molecules of class a, the probability that 

the centre of a molecule of class ft may be found within the limits dy" dz" 
measured relatively to the first molecule will be

dp' d ¥ r dx" dy" dz",

where 12' is the potential of a molecule of class ft a t this point. Now n 'can  be made 
up of two parts, f2j the jmrt due to the presence of the single molecule of the first 
class, and n 2 the part due to all the other molecules combined.

I t  is clear that I2X will only depend on the two molecules of the encounter, and is 
therefore a function of p  p ' r  r'x" y "and z"

The total number of encounters of the type we are now considering, namely those 
within limits

dp dV du dp' d Y  du' dy" d z " ...... ( iii)
will be V

2 e-;t(Wc'.+20l+2v>Y f  dp' dll' dz",

where the summation extends to all the molecules of class a.
This number may be written as

g-^+20.) Yfdp' d V  du' dy" dz".

Now it is obvious that the mean value of e~2m- taken over all the elements of 
volume included in the summation, will be , where 'F' is the mean intermolecular 
potential of a molecule of class fi, and is therefore a function of h and only.

Thus, since the summation extends to N a elements of volume,

Se-2*0’ dx" dy" dz" =  Na e"2**' dx" dy" dz '.

This gi\es us foi the total number of encounters of the type we are considering,
e- ^  w » +8t,+ttl)FFjgr/ dp ^  du dp, d Y  ^  

or, if we write

the number is
V =  -f- c'~) +  2^' -f 2'F' -f 2fi2) . . .

e-v  Y F 'J f ' dp dVdu dp' c?P' dx" dy" dz" . .

. . (iv.)>

. . (v.).
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Let us call encounters of this type, encounters of class A, and denote their number 
(expression (v.) ) by N A.

There will be a second class of encounters which will be called class B, such that 
the co-ordinates after the encounter lie within the limits (iii.), (p. 416). The 
co-ordinates before the encounter will accordingly lie within certain other limits,

dp c/P du dp dP' d z "  (vi.),

surrounding certain values p, P . . . &c. By Liouville’s Theorem, the complete 
differential (vi.) is equal to the complete differential (iii.), hence the number of 
encounters of class B will, by comparison with (v.), be seen to be

e-v YF'ffdp dP du dpdu' dx" ",

the positional co-ordinates and therefore also ^  remaining unaltered by the 
encounter.

Let N0 be the total number of molecules lying within a range dP. Then a 
certain number of encounters of class A will result in a unit loss to N0, a certain 
number of encounters of class B in a unit gain. Thus, if for one at least of the 
co-ordinates which are changed by the encounter, say we have A where A
denotes an increase due to an encounter, then it is certain that the co-ordinate £ will 
be placed outside the limit c/£, and N0 will accordingly be diminished by unity.

I t  is, however, conceivable tha t for every co-ordinate we may have A<f <  d£, and in 
this case there is a probability X that no single co-ordinate passes outside its limits, 
and therefore that the molecule after encounter must still he counted in N0. It is 
easy to see that the probability that the £ co-ordinate remains with the limits d£ is

( 1 — — ), and therefore that
V

x =  n ( r - f | ) ,

where II denotes continued multiplication extending to all the , co-ordinates. I lie 
loss experienced by N 0 on account of encounters of class A will therefore be (1 — X) NA 
where X =  0 for certain values of x" y" z", and is a proper fraction over the remainder, 
and the boundary of these regions depends on the co-ordinates of encounter.

I t  follows that as the result of encounters of classes A and B combined, there is a 
net gain to N 0 of

[(1 _  \ ) e-vFF ' — (l — \ ) e -vF F ']# ' dp dP du dP' du dx" dz".

The expression in square brackets may be written as A {(1 X)e 'L l1 }. Hence 
the total gain to N 0 arising from all classes of encounters will be

cZP ^A {(1 — X) e~n FF 'j f j ' dp du dx" dy" dz". . . (vii.).

3 i i
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Here, as throughout the paper, a single tall integral sign denotes integration over 
all values of the variables, of which the differentials occur after the sign of integration.

For those values of x ", y", z",for which X is different from zero, we have seen that 
A£ is, for every co-ordinate £ of the same order of small quantities as and hence 
it follows that

^ 4  ,x .- ' F T j f f d p

is of the same order of small quantities.
In the limit, when the differentials such as d£ are supposed to vanish, this integral 

will vanish also, so that we may put X =  0 in expression (vii.).
The total gain to N0 from all encounters is therefore IcZP, where

t - f r m r * * * * - ™ * * - ■ ■ ■ < * > •

§ 21. Now we have seen (§ 19) that the change in N0 in time dt will arise from 
three causes—

(a) the change arising from collisions,
(/3) the change arising from encounters other than collisions,
(y) the change arising from the change in the co-ordinates of the various mole

cules during the time dt, which would occur if there was no interaction 
between different molecules.

Now any molecule, A, will collide with a second molecule, B, in the interval of 
time dt, provided that at the beginning of this time the centre of A lies within a 
certain region of space ; provided, that is, that x" lie within certain limits. It 
is easily seen that these limits are arrived at by writing — u "  dt, and allowing 
for y" z" a range of values corresponding to points inside a certain circle of diameter 
equal that of a molecular sphere. Hence the increase in N0 arising from cause (a) 
will be JcZP dt where

J  =  j  A{<r” FF'} f f  dp du dy" dz" . . . .  (ix.),

and A denotes the increase due to a collision.
The increase arising from encounters other than collisions lias already been found 

to be Tt/P (see viii.), where A must denote the increase due to an encounter of which 
the duration is dt.Since dt is to be very small, we may replace A by D/Db
where D/D tdenotes the rate of increase under the influence of intermolecular forces 
only. The increase to N0 arising from cause (/3) will therefore be K dV dt, where

K = {e-’FF'} f f  dp du dp' d¥  'du' dx dy" dz"
■ (x.).
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§ 22. In  addition to the gain or loss which has just been calculated, Nn will experi
ence a further gain or loss on account of the gradual changes in the co-ordinates of 
the various molecules.

Let £ be a typical co-ordinate, and and £0 -f S£0 the limits of the values of £ for

molecules counted in N0. After a time dt, £ will have increased to £ +  ^  dt, so that

some molecules will enter within the above limits, and others will pass out, in course 
of the time dt.

The molecules which enter within the limits will be those for which, at the begin

ning of the interval, f  had a value which was between £0 — 

number of such molecules is accordingly
/ £o

4 K V
Similarly the number of molecules which escape from between these limits is

sHN»f) *>
so tha t the resultant gain to N0 on account of changes in the £ co-ordinates, the other 
co-ordinates being supposed to remain constant, will be

There is no limit to the smallness of dt,so that if all the co-ordinates vary simul
taneously, the gain to N0 will be

7 _,0NO d% AT - ^  3 (d%\
or dt 2  dt N°

in which the summation extends to all the co-ordinates and s.
The value of d ijd t  must be found from the equations of motion of the molecule 

when under the action of no external forces. If  rj be any co-ordinate of position, and 
E be written for the total energy T -f- V, then these equations will be of the form

d /3E\ _  oE __ cG
dt \dr j)  Or] dr/

This leads to the following scheme of values for the various time-differentials
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Now it appears from the scheme of values just found tha t terms of the form 

3̂ (7̂ ) Can 011̂  ar*se *n connection with the s co-ordinates, so that 2 ̂  (c/fj may 
replaced by — e where

1_ . i .
€ “  dx 3st3 +  0*7

Thus the gain to N0 arising from the cause (y) will be

(xi.).

We have now counted up all sources of change in N 0; we therefore have, as the 
equation to be satisfied by N0,

=  Jc lP d t +  K d P d t +  ( N -  ' ■ • (xii4

§ 23. We have found the equation ( (i.), p. 415),

N0 = e-h{,M2)F f d p d P
and N0 =  SNa

where the summation is such as to cover all ranges of and u.
We may therefore write

N0 =  H F
where Id is given by

H =^<T w +2*>/ ...........................................(xiii.),

and is therefore a function of h only.
Substituting this value of N0 in equation (xii.), we have the equation

| ( H F )  =  J  +  K +  , H F - H r ! f ..................... (xIv)

Let us write F =  e~x and substitute this value for F in the integrals J  and K. We
have

A [e~’’F F } =  Ae“(’, + *+*')

—  g  ~ (v  +  X +  x') £ g. -  A + X +  X')   |  j

Referring to equation (iv.) we find that

V +  X +  X =  ^ l m (c* +  c'~) +  +  2T' -f 2D] +  X +  X •

From the equation of energy (see p. 412),
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. A {m (c- +  c'3) +  2 (Q +  S +  Q- +  S ') } =  0.

Hence A (v +  X +  X ) =  —

whe«* C =  2 h (Q +  S +  Q' +  S') -  x -  x '.

In virtue of the assumptions which have been made, (  is a small quantity, so th a t 
we may put

e* — 1 =  A£, 
and therefore A {e~v F F '} =  Fe ~ A £.

The same transformation holds if A is replaced by D /IX  Hence we have (see 
equations (ix.) and (x.), p. 418).

Ml!, J. H. JKANS ON THE DISTRIBUTION OF MOLECULAR ENERGY.

J  =  FL, K =  FM,

where L =  <̂3 -<’ + «  A i f f  dp du dp' d V  u "  dz" . .■ • (xv.),

M =  \e  + *1 ? |  f f  dp du dp r/P' . .. . (xvi.).

Making these substitutions, equation (xiv.) becomes

S F -  HFt  = F<L + M) + <HF + f ,
or dividing throughout by HF,

hi_ I  m_ , _  1 /T , M\ _  v &  dl  ( \
a t h dt h(L *  • • • • (XV11-)-

This is the characteristic equation satisfied by y.

Form of General Solution.

§ 24. We must first examine in what way the integrals L and M involve r, and 
5. In L these co-ordinates are only involved through the factor A^ which occurs in 
the integrand.

Now A r — 0, and A q,A scan, from the equations of impact, be expressed as linear
functions of all the velocities concerned. The coefficients will be functions of p, 
but we may as usual put r, r' = 0.

I t  follows that A£ is a function of q, r, and of degree equal to that of £  and will 
involve p, p', u, ur as well as these variables. If, then, £ is of degree n in q, r , and ,
we may regard A^ as a function of q, r ,and 6* of degree n, of which the coefficients are 
functions of the variables with respect to which integration is performed in 
evaluating L. Hence after integration we shall have L as a function of r, and 5 of 
degree n.
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In the same way, the variables q, r, and 5 only enter the integral M, through the 
term D£jDt, and we may write

5?  _  * ?£ 2?
d * ~ 8  ̂ u r

Now D£[Dt denotes the rate of increase in £ owing to the action of forces of which 
the potential energy is n 3.

W rite E =  T +  V  +  n lf then

D /dE\ __ dE
1)£ dr) / dr\ ’

in which 77 is any one of the or r  
co-ordinate.

Eg 1 dfL,
D bx dpl ’Hence

co-ordinates, and 77 is the corresponding velocity

Dr3 _ Dsj _ 1 dEl-i
~Dt ” °  ’ Et ~  d]~d7\'

The right-hand members of these equations will be functions of the p \  r, r  co
ordinates, but it is clearly legitimate to put , rf all equal to zero, and regard the 
expressions as functions of p  and p'only.

I t  therefore appears that D^/D twill be a function of r, and s, of which the 
degree is ( n — 1), and upon integration, that M is a function of , r, and s of the 
same degree.

The terms l a n d 2 l f  which occur in equation (xvii.) will be functions of q,

and s of degree n.
§ 25. It is therefore clear that the correct form to assume for y is a rational integral 

algebraic function of the co-ordinates q, r,and s.
If  we assume x  the most general function of degree n in these co-ordinates,

the coefficients being functions of the time, and if we substitute this assumed value 
for x  i11 equation (xvii.), we shall get, on each side of the equation, a function of 
q, r , and s of degree n.

It therefore we equate the coefficients ol every term on the two sides of the 
equation, we shall have found a solution of equation (xvii.), p. 421, inasmuch as this 
equation is now satisfied identically for every value of , r, and 6*.

The process of equating these coefficients leads to a series of differential equations, 
in which the time-rate of increase of every coefficient is given explicitly in terms of 
the other coefficients and of h.If, therefore, we suppose the coefficients to vary with 
the time in the manner given by these equations, the value of y so obtained will be a 
solution of equation (xvii.) for all time. Since the equations involve , and h varies 
with the time, one further equation is required before we can express the co-ordinates 
at any time in terms of the initial values of the co-ordinates and the time. This 
additional equation is supplied by the fact that N> the total number of molecules, 
remains constant.
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W e have (see § 23, equation (xiii.) ),

N =
5

HFcZP
5

e-**+t*>yF dp cl? (xviii.),

and the equation dN /dt =  0 is the equation required. W ith the help of the other 
equations, it can be written so as to give explicitly as a function of and the
other co-ordinates.

Thus if we have the initial form of y given, we have obtained sufficient equations 
to enable us theoretically to determine y at any subsequent time. I t  is not proposed 
to attem pt the solution of the system of equations in the most general case ; the dis
cussion is confined to the modified forms which these equations assume in the two 
states of which the physical interest is greatest, namely the steady state, and the 
state in which the gas is non-Luminous.

Solution in Steady State.

§ 20. The mathematical condition that a steady state may be possible, is that it 
may be possible for the time rates of variations of the coefficients to vanish 
simultaneously. From the equations found by equating to zero the time rates of all 
the coefficients except li, it is possible to find these coefficients in terms of so that 
the condition for a steady state to be possible is that the function of h obtained by 
substituting these values in the expression for dh/dt shall vanish identically for all 
values of h.It is, however, known that the condition that a steady state shall be 
possible is tha t G shall be identically zero, and we may therefore begin by putting 
G =  0 and neglecting the equation dh/dt — 0.

Thus all the equations necessary are contained in the characteristic equation 
satisfied by y, and this is now ( cf.equation xvii., p. 421)

or substituting for d^/dt from the scheme of p. 419,

h (l + m>+ ! ( ! * . =  o (xix.).

Let us assume as a possible value for y the most general expression of degree n in q, 
r  and 5, the coefficients now being independent of the time.

Consider the system of equations which is obtained when we equate to zero the 
coefficients of terms of degree n in equation (xix.). The terms of degree n in the 
integral L arise entirely from the terms of degree in y (see § 24). These terms
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will each be multiplied by linear functions of the coefficients of terms of degree n in 
y , and the whole expression will be multiplied by X where

X =  ^  e -(v+x')clp du c ' u"

Now XF dP  is the number of collisions per unit time which are experienced by all 
the molecules of which the q, r, s, co-ordinates lie within limits Since the 
probability of a collision does not depend on the q, s co-ordinates, it follows that
the total number of collisions per unit time is ^ X JF I t  follows that X is a
function of h only, and does not depend on the coefficients which occur in y.

In the second integral M, terms of degree n do not occur at all.
In the remaining terms of equation (xix.) terms occur of degree n in q, the

coefficients being of the same form as those occurring in L except that the factor X
does not occur.

We have thus found as many equations as there are coefficients; in these 
equations every term is a coefficient multiplied by a constant. The only solution 
of this system of equations is tha t every coefficient vanishes.

This result depends on the assumption that is greater than two. Hence in the 
steady state y will contain no terms of a degree higher than the second in q, r  and s*. 
At the same time y  can contain no terms which are linear in q, r  or The intro
duction of these terms would give a law of distribution such that an infinite number 
of molecules would have an infinite value for dz zb and s-

We may, therefore, suppose that, except for an additive constant, y is a quadratic 
function of q, v and s, in which only square terms occur.

The equations between the coefficients of this quadratic expression must be linear, 
since they are the coefficients of the terms of highest degree in y, and hence must 
lead to unique value for these coefficients.

Thus for the type of molecule which we have been considering, there is only one 
steady state possible on the assumptions we have made.

It is easily verified that
y =  Q +  S +  V ...........................................(xx.)

is a solution of equation (xix.). For, with this value for y, D£/D/ and both vanish,
(3 C 0so that L and M both vanish, and we have also s1 =  - *q. Hence every term

of equation (xix.) vanishes separately, and the value of y  given by equation (xx.) 
supplies a solution which, as we have seen, must be unique. This is tbe solution of 
M a x w e l l  and B o l tzm a n n .#

* The possibility of x being an infinite series has been disregarded in the above sections. \Yc may, 
however, consider that a series which was divergent for any finito values of the variables would lead to an 
impossible law of distribution, whilst a series which is convergent for all finite values, may be treated as 
the limit of a finite series in which the number of teims is made infinite.
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Solution for Low Temperatures.

§ 27. In the approximately steady state which was found to be possible at low 
temperatures, for the previous system of molecules, it was found that the various mean 
energies varied very slowly with the time. But if such a state were possible for the 
present system, it would not follow that y would only vary slowly with the time, so 
tha t an approximate solution of dyjd t — 0, even if it could be found, would be useless.

Let us, however, examine under what circumstances we could have d^/d t equal to 
zero, without approximation. From the remarks a t the beginning of the last section, 
it is clear tha t the coefficients in y can be so chosen as to make d^/dt equal to zero, 
but th a t it is only in the event of G being absent, that these values will also make 
dh/dt =  0.

Let us suppose th a t by some external agency h is caused to increase uniformly 
throughout the whole gas, a t a rate exactly equal to the rate at which it decreases 
in consequence of the value of dh/dt, found in the manner described at the beginning 
of § 26, being different from zero. Then a completely steady state will have become 
possible, and this is because the imaginary agency introduces exactly sufficient energy 
to compensate tha t lost by radiation. In a state such as that which, in the first 
part, was described as approximately steady, the radiation was very small. If  a 
similar state can be shown to be possible in the present case, the radiation will be 
very small, and therefore the energy introduced from outside will be very small. 
Hence it will be legitimate to describe the state which would he arrived at by 
checking the external flow of energy as approximately steady.

The equation which leads to such a state is =  0, or

c + s (L + M) + ?(tS - tr
K 1 3v 3G, (xxi.).

The last term in equation (xxi.) is of the same degree as y, so that just as in the 
last section it may he shown that y cannot contain terms of a degree higher than 
the second. And for the same reason as before, y cannot contain terms linear in any 
of the coefficients, so tha t we may assume

y — +  2yffi3 +  ^ S ^ 2 +
»

Now at low temperatures all the terms in equation (xxi.) are small, except terms 
of the form

1 d. 0Sj 1 "

These terms must therefore vanish approximately for all values of the variable, and 
this requires the relation

7l/^l =  C\jdy 
3 iVOL. CXCVI. —  A.
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This merely shows that, neglecting small quantities of the order of the coefficients 
in G, the energy of any of the r, s modes of vibration must be equally divided 
between kinetic and potential energy.

I t  is now clear, that at high temperatures the last term in equation (xxi.) is small 
in comparison with the others, so that the law of distribution will be very little 
altered by the presence of a dissipation function, whereas at sufficiently low tempera
tures, the term arising from the dissipation function becomes as important as any 
other term in the equation, and, therefore, the presence of a dissipation function, 
however small, will be sufficient to entirely alter the law of distribution.

And without investigating the solution of the system of equations which determine 
the coefficients in y, it is clear that since they are all linear, every coefficient must 
be a single-valued function of h only. Hence, as before, there is only one approxi
mately steady state for a given temperature, but it is no longer true that the various 
lines of the spectrum increase in brightness in the same ratio when the temperature 
is increased. Since the u, q modes of energy suffer very little loss of energy, and 
since energy passes freely between these modes, it follows that the energies of these 
modes will very approximately be distributed according to B o l t z m a n n ’s Law.

- Hence all that was said about the ratio of the two specific heats with reference to 
the former type of molecule considered, will apply also to molecules of the type which 
we have just been discussing.

PART III.

P h y s ic a l  c o n se q u en c es  of t h e  F o r eg o in g  T h e o r y .

§ 28. We have thus been led to the same results in both parts of this paper. It 
seems natural to suppose that results which are qualitatively the same will be found 
to be valid for any gas, and, assuming this to be the case, to examine some of the 
consequences of these results.

Radiation at a given Temperature.

§ 29. In the first dynamical illustration, the radiation from each degree of freedom 
at temperature I was found to be proportional to T3,2. In the second illustration, the 
expression for the radiation would have been too complicated for the calculation of it 
to have been profitable.

A modification of the system discussed in Part II., leads to an interesting 
expi ession for the radiation. In this modified system the molecules are to be 
spheies with modes of internal vibration to and from which energy only passes with 
difficulty. Lach sphere is surrounded by a field of force, such that when two molecules
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are m contact in any position, their potential has a constant value O. When two 
molecules are not very near, let us suppose tha t the transfer of energy between 
diffeient ?, s inodes may he neglected, so tha t the mam transfer of energy takes 
place through collisions. *

At any collision, the r, s energy of the colliding molecules will be small, so that the 
amount by which the r, s energy is increased will depend only on the u and 
energies of the colliding molecules; tha t is to say, on the average, on h.

Thus if n collisions take place per unit time, the total transfer from the u, modes 
of energy to any specified v, s mode may be taken to be C where C is a constant 
for any particular r,s mode.

The sum of such amounts must he equal to the amount radiated per unit time, 
and may therefore be supposed to be roughly proportional to the energies of the 
r, s modes. I t  follows th a t for a single molecule the r, s energy is proportional 
to ft/N/i.

Now we may take for the number of collisions

A N 2e-7tn
n =  ~ 7 h ~ >

n  __ANe-7iri
m  ~  ’

and if p be the density, the radiation will be proportional to e~ha, or, in terms of
the temperature, to pT3 2 e~^r-

This example is of such a special nature tha t not much importance can be attached 
to the actual result obtained. I t  is, however, of interest, as showing that it is at any 
rate possible for the radiation to increase very rapidly with the temperature. A 
comparison with the result of § 9, shows that the introduction of a field of force has
introduced a factor e~f~into the expression for the radiation, and a factor of this 
form figures in every formula for radiation.!

The presence of the factor p multiplying the expression for the radiation, is an 
essential feature of the present theory.^ If  the exponential factor changes very 
rapidly with the temperature, so that the point of incandescence is sharply defined, 
then this point will clearly be almost independent of p, and variations in radiation on

* This assumption, although not stated explicitly in the investigation of Part II., is implied in the 
assumptions made there.

t W ien and Planck give for the radiation in the part of the spectrum between and X + 8X, the 

formula CiX-5 e~ir dX. Lord Rayleigh, on theoretical grounds, suggests as an emendation CxTAr4 e~xi dX. 
(‘ Phil. Mag.,’ June, 1900.)

\ [Added March 19, 1901.—I was not aware, when writing this, that the presence of the factor p had 
been detected experimentally. See Liveing and Dewar, ‘ Roy. Soc. Proc./ 49, p. 217, or Kayser, ‘ Hand- 
buch der Spectroscopie ’ (1900), I., p. 143.]
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where A is a constant. 

Hence

3 i 2
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account of density will be unnoticeable in comparison with variations on account of 
temperature.

I t  is, however, clear that in considering radiations from gases of great density, such 
as for example occur in the sun, the factor p would he of considerable importance.

Generalised Theory o f Temperature.

§ 30. The state of a gas may he regarded as depending upon a principal 
temperature rf , and also on a number of subsidiary temperatures t15 each
of these temperatures corresponding to one (or possibly more) of the degrees of 
freedom of the molecule. The principal temperature is to correspond to the three 
degrees of freedom implied by the possibility of translation through the ether, 
and to any other degrees of freedom which are such that their mean energy is at all 
temperatures equal to a third of the mean energy of translation.

The principal temperature is to be proportional to the mean energy of translation 
of a molecule and each subsidiary temperature proportional to the mean energy of 
each of the modes to which it corresponds. Thus two modes can only have the same 
subsidiary temperature when their mean energies are, under all circumstances, 
equal, as, for example, when they are the kinetic and potential energies of the same 
vibration. When the energy is equally distributed between all the degrees of freedom 
all these temperatures are to become equal.

We have found that at temperatures below the temperature of incandescence there 
is an approximately steady state in which

Ti =  Pfi (T), t2 =  T), &c.,

where /i(T ), /^(T), &c., are functions of T, which a t these temperatures are very 
small in comparison with T.

At higher temperatures we have not investigated the forms of rlt but at
infinite temperatures,

ri =  r3 =  . . . . =  T.

§ 31. The steady state specified above was arrived at on the assumption that 
external agencies could only influence the energy of translation, and that the other 
energies were only influenced indirectly through changes in the energy of translation.

Thus the above equations will not hold in the presence of agencies which exert a 
direct influence on the subsidiary temperatures. Such influences may be looked for 
in the forces of chemical action, disturbances in the ether, and possibly in the cathode 
rays, if we suppose these rays to be streams of charged ions which are so small as to 
penetrate inside a molecule rather than act on the molecule as a whole.

When such agencies are present, the above equations must give place to others. 
I he subsidiary temperatures which are most directly concerned may attain to
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abnormally high values, and this may result in the phenomena of phosphorescence, 
chemi-luminescence, &c. To take a definite instance, suppose that r L corresponds to 
a vibration in the molecule of frequency p.If  a ray of light passes through the 
substance, those components of this wave of which the frequency is nearly equal to p  
will supply energy to the mode iq of the molecules, and this energy will be distributed 
from the iq mode to the other modes, and so through the substance. Thus the result 
is a heating of the substance, and an absorption band in the spectrum of the light 
transm itted through it. The illustration might be varied by supposing that energy 
could not easily distribute itself from iq to all the other temperatures, but that it 
passed freely to a second temperature r2. In this case the temperature r2 might 
conceivably attain  to such a high value as to emit its own spectrum, and so set up 
fluorescence or calorescence.

The spectrum of the gas in any condition whatever will be arrived at by the 
superposition of the various spectra of the subsidiary temperatures, and the state 
of the gas as regards the emission of radiation will be completely specified by the 
values of the various subsidiary temperatures.

Thermodynamics.

§ 32. At temperatures at which the gas is dark, we may take

= r3 = • . • = °-
Thus at these temperatures we are only concerned with the principal temperature, 

and the total energy of the gas is proportional to this temperature. If n degrees 
of freedom correspond to this temperature, the ratio of the specific heats will be

1 +  2/n,

both specific heats being constant as regards the temperature. I  he view which we 
have put forward does not clash with the ordinary thermodynamics as regards 
dark gases.

When the subsidiary temperatures begin to have appreciable values the case is 
different. The total internal energy is now given by

W  =  C{ftT +  2/qiq},

where C is a constant, and kj is the number of modes of energy of which the 
subsidiary temperature is iq. The specific heat at constant volume is gi\ en by

Cx =  d W / d T  =  C {ft +  t p K j i ( T )},

and therefore depends on both the temperature and density.
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If  a quantity dQ of work be absorbed by a gas, 

dQ =  NdW  — pdv

= CNjndT + (ft/i(T))} -  TPRd ( j j  .

If  the gas be made to pass through any succession of states so as to return to the 
same temperature and density,

[ f .  = C N s Q ® f^ T .

Thus the second law of thermodynamics will only hold in special cases for a gas which is 
emitting radiation of any kind. This part of the subject of luminosity has, however, 
been developed by W ie d e m a n n ,*  so that i t  seems unnecessary to pursue it any 
further here.

* E. Wiedemann, “ Mechanics of Luminosity,” ‘Phil. Mag.,’ vol. 28, 1889, p. 152, or ‘ Wied. Annalen 
\ol. 37, p. 181.
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