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PEEFACE TO THE SECOND EDITION

II /TY primary aim in the first edition of this book was to develop the

Theory of Gases upon as exact a mathematical basis as possible.

This aim has not been forgotten in the preparation of a second edition, but

has been combined with an attempt to make as much of the book as possible

intelligible to the non-mathematical reader. I have adopted the plan,

partially followed in the first edition, of dividing the book to a large extent

into mathematical and physical chapters. The reader whose interest is

mainly on the physical side will, it is hoped, get an intelligible account of

the present state of the subject by reading the physical chapters I, VI, VII

and XI to XVIII, and regarding the more mathematical chapters simply as

material for reference. Apart from this, something is, I think, gained by

clearing the ground by a fall mathematical treatment before any physical

discussion is attempted.

Since the first edition of this book appeared the position of the Kinetic

Theory has been to some extent revolutionised by the growth and develop-

ments of the Quantum Theory, and it has been by no means easy to decide

what exact amount of prominence ought to be given to the Quantum Theory

in the arrangement of the book. The plan finally adopted has been to confine

the Quantum Theory to the last chapter ; the difficulties arising out of the

classical treatment have been allowed to emerge in the earlier chapters, but

have been left unsolved. The last chapter merely indicates how these

difficulties disappear in the light of the new conceptions of the Quantum

Theory : no attempt is made to give a full or balanced view of the whole

theory. In the present status of the Quantum Theory this seemed to me

the best procedure, but I anticipate that if the book is fortunate enough to

run to a further edition, the Quantum Theory is likely to figure much more

prominently there than in the present edition.



vi Preface to the Hecond Edition

It will be found that the book has been very extensively rewritten since

the first edition. A large amount of new matter has been inserted, and a good

deal of labour has been expended in bringing the subject up to date, both on

the theoretical and experimental sides. I hope the book in its new form will

be of value to the large and increasing number of physicists who find a

knowledge of the methods and results of the Kinetic Theory essential to their

work, as well as to those who study the subject for its own sake.

J. H. JEANS.

London,

January 1916.
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CHAPTER I

INTRODUCTION

1. The Kinetic Theory of Matter rests essentially upon two closely

related hypotheses; the first—that of the molecular structure of matter,

the second— the hypothesis that heat is a manifestation of molecular

motion.

The first of these hypotheses belongs to the domain of chemistry ; indeed

it forms the basis of modem chemical science. It is believed not only that

all matter is composed of a great number of molecules, but also that all

molecules of the same chemical substance are exactly similar as regards size,

mass, etc. If this were not so, it would be possible to separate the mole-

cules of different types by chemical processes of fi^actionisation, whereas

Dalton found that the successively separated fractions of a substance were

exactly similar. It is true that very modem research has thrown some

doubt on whether the molecules of a substance are all as exactly identical as

they were once thought to be, but it is also true that the hypothesis of exact

similarity of molecules is now, as a broad truth, unassailable, and forms

a suitable and convenient working hypothesis for the Theory of Matter.

The second hypothesis, the identification of heat with molecular motion,

is that with which the Kinetic Theory of Matter is especially concerned.

This hypothesis was for long regarded as pure conjecture, incapable of direct

proof, and probable just in proportion to the number of phenomena which

could be explained by its help. In recent years, however, the study of the

Brownian movements has provided brilliant visual demonstration of the truth

of this conjecture, and the actual heat-motion of molecules—or at least of

particles which play a r61e exactly similar to that of molecules—may now be

seen by anyone who can use a microscope.

The Three States of Matter.

2. One of the most striking and universal properties of the different

kinds of matter is that of appearing in three distinct states—solid, liquid,

and gaseous. Broadly speaking, the three states are associated with different

J. o. 1



2 Introduction [ch. i

ranges of temperature ; as the temperature of a substance is raised, the sub-

stance passes through the solid, liquid, and gaseous states in succession. It is

natural to conjecture that the three states of matter are associated with three

different types or intensities of molecular motion, and it is not difficult to see

how the necessity for these three different states arises.

We know that two bodies cannot occupy the same space ; any attempt to

compel them to do so brings into play a system of repulsive forces tending to

keep the two bodies apart, and this system of forces can only be interpreted

as the aggregate of the forces from individual molecules. It follows that

molecules exert forces on one another, and that these forces are, in general,

repulsive when the molecules are sufficiently close to one another. On the

other hand, the phenomenon of cohesion shews that the force between two

molecules may, under certain conditions, be one of attraction.

3. The solid state. The fact that a solid body, when in its natural

state, resists both compression and dilatation, indicates that the force

between molecules changes from one of repulsion at small distances to one

of attraction at greater distances. This change from a repulsive to an

attractive force suggests a position of stable equilibrium in which a pair of

molecules can rest in proximity to one another. If we imagine a great

number of molecules placed in proximity and at rest in an equilibrium

configuration, we have, on the Kinetic Theory conception of matter, a mass

of matter in the solid state, and, as there is no motion, this matter must be

supposed, in accordance with the fundamental hypothesis of the theory, to be

entirely devoid of heat.

The molecules of which the substance is formed will be capable of

vibration about their positions of equilibrium, and when these vibrations

occur, we say that the body possesses heat. As the vibrations become more

vigorous we say that the temperature of the body increases.

For example, we may imagine the vibratory motion of the molecules

to be set up in the first instance by rubbing the surface of the body

against a surface of a similar body : here we have a case of heat generated

by friction. The act of rubbing will consist in first placing the surfaces

of the two bodies so near to one another that the molecules near the

surface of one exert a perceptible action on the molecules near the surface

of the other, and then in moving the surfaces over one another so as to

disturb these surface molecules from their positions of equilibrium. At

first the motion will be confined to the neighbourhood of the parts actually

rubbed, but the motion of these parts will gradually induce motion in the

adjoining regions, until ultimately the motion will have spread over the

whole mass.
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As a second example, we may imagine two masses, both devoid of

internal motion, to impinge one upon the other. The impact will at first

cause systems of waves to be set up in the masses, but after a sufficient

time the wave character of the motion will have become obliterated, whilst

motion of some kind must persist in order to account for the energy of

the original motion. This original motion will, in fact, have become re-

placed by a small vibratory motion of the molecules about their positions

of equilibrium— according to the Kinetic Theory, by heat-motion.

4. The liquid state. If the body under consideration continues to

acquire heat in any way—if, that is, the energy of vibration is caused con-

tinually to increase—a stage will in time be reached in which some of the

molecules are possessed of so much kinetic energy that the forces from the

other molecules no longer suffice to hold them in position: they will, to

borrow an astronomical term, escape from their orbits. When the body has

reached a state such that this is true of a great number of molecules, it is

clear that the application of even a small force, provided it is continued for

a sufficient length of time, will, by taking advantage time after time, as

opportunity occurs, of the weakness of the forces tending to retain individual

molecules, cause the mass to change its shape. When this stage is reached,

the body has assumed a plastic or liquid state.

When a molecule of a liquid escapes from its orbit it will in general

wander about amongst the other molecules until it falls into a new orbit. If,

however, it was initially near to the surface of the liquid, it may be possible

for it to escape altogether from the attraction of the other molecules, just

as it is possible for a projectile, if projected from the earth's surface with

sufficient velocity, to escape from the earth altogether. When this happens

the molecule will leave the liquid, so that the mass and volume of liquid will

continually diminish owing to the loss of such molecules. Here we have the

Kinetic Theory interpretation of the process of evaporation, the vapour being

formed by the escaped molecules.

If the liquid is contained in a closed vessel the escaping molecules will

impinge on the side of the vessel, and after a certain number of impacts,

may fall back again into the liquid. When a state is reached in which the

number of molecules which fall back in this way is exactly balanced by the

number which escape, we have, according to the Kinetic Theory, a liquid in

equilibrium with its own vapour.

5. The gaseous state. If we suppose the whole of the liquid transformed

into vapour in this way, we have the Kinetic Theory conception of a gas.

The molecules can no longer be said to describe orbits, but describe rectilinear

paths with uniform velocity except when they encounter other molecules or

the walls of the containing vessel. It is clear that this view of the nature

of a gas will sufficiently explain the property which a gas possesses of

1—2



4 Introduction [ch. i

spreading throughout the whole of any closed space in which it is placed.

It is not necessary to suppose, as was at one time done, that this expansive

property of a gas is the result of repulsive forces between the molecules.

The fundamental accuracy of this conception of the gaseous state is finely

illustrated by some experiments of Dunoyer*. A cylindrical tube was divided

into three compartments by means of two partitions perpendicular to the

axis of the tube, and these partitions were then pierced in their centres by

small holes, so as to form diaphragms. The tube was fixed vertically and in

its lowest compartment was placed a piece of some substance, such as sodium,

which is in the solid state at ordinary temperatures. After exhausting the

tube of all air, the sodium (or other substance) was heated to a sufficient

temperature to vaporise it. As the molecules of the vapour are shot off,

they move in various directions, and the majority strike on the walls of the

lowest compartment of the tube and form a deposit there. Some however

pass through the first diaphragm, and describe paths radiating out from the

hole in this diaphragm. A few of the molecules pass through both diaphragms

into the upper compartment of the tube. These do not collide, for their

paths cannot intersect since they are rectilinear paths all radiating from the

same point, namely the hole in the lower diaphragm. They accordingly

form a deposit on the top of the tube, and this deposit is found to coincide

exactly with the projection of the hole in the second diaphragm formed by

radii drawn from the hole in the first diaphragm. If a small obstacle is

placed in the path of these molecules, it will be found to form a " shadow
"

on the upper surface of the tube ; it may even be that an umbra and

penumbra will be discernible.

Mechanical Illustration of the Kinetic Theory of Oases.

6. The Kinetic Theory of Matter is best approached through a study of

the Kinetic Theory of the gaseous state. Indeed, until very recently, the

Kinetic Theory of Matter has been identical with the Kinetic Theory of

Gases ; there has not been sufficient evidence as to the conditions prevailing

in the solid and liquid states to formulate a Kinetic Theory of these states.

The requisite evidence is now rapidly accumulating, so that theories of the

solid and liquid states are becoming possible, in outline at least, but it is still

true that the theory of gases is much more developed and complete than the

corresponding theories of liquids and solids can possibly be, and the earlier

chapters of the present book are devoted especially to the consideration of

the gaseous state.

.7. It is important to form as clear an idea as possible of the conception

of the gaseous state on which the Kinetic Theory is based, and this can best

be done by considering a mechanical illustration.

• L. Dunoyer, Comptes Rendus, 152 (1911), p. 592, and Le Radium, vin. (1911), p. 142.
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Very little is known as to the structure or shape of actual molecules, or

the way in which they react upon one another. Since, however, it is desirable

to have as concrete a representation as possible before the mind, at least at

the outset, we may (following a procedure which is very usual in the develop-

ment of the Kinetic Theory) agree for the present to associate the idea of

a molecule with that of a spherical body of great elasticity and rigidity—to

make the picture quite definite, let us say a billiard-ball. The justification

for this procedure lies in its success : it will be found that the behaviour of

a gas in which the molecules are complex structures of the most general kind

can, to a large extent, be predicted from the behaviour of a much simpler

imaginary gas in which the molecules are of the type just described. In fact,

one of the most striking features of the Kinetic Theory is the extent to which

it is possible to predict the behaviour of a gas as a whole, while remaining in

almost complete ignorance of the behaviour and properties of the molecules

of which it is composed. Indeed, so many of the results of the theory are

true for all kinds of molecules that they would remain true even if the mole-

cules actually were billiard-balls.

As it is somewhat difficult to imagine in detail the motion of a large

number of spheres flying about in three dimensions, we may conveniently

confine ourselves to a consideration of the analogous motion in two dimen-

sions. As the molecules of the gas are to be represented by billiard-balls,

let us suppose the vessel in which the gas is enclosed to be represented by

a large billiard-table. The walls of the vessel will of course be represented

by the cushions of the table, and if the vessel to be represented is a closed

one, the table must have no pockets. Finally, the materials of the table

must be supposed of such ideal quality that a ball once set in motion will

collide many thousands of times with the cushions before being brought to

rest by the friction and the various other passive forces which tend to destroy

its motion. A great number of the properties of gases can be illustrated

with this imaginary apparatus.

If we take a very large number of balls, and start them at random on the

table with random velocities, the resulting state of motion will give a repre-

sentation of what is supposed to be the condition of matter in its gaseous

state. Every ball will be continually colliding both with the other balls and

with the cushions of the table. The velocities of the balls will be of the

most varying kinds : at one instant a ball may be brought absolutely to rest,

while at another instant, as the result of a succession of favourable collisions,

it may possess a velocity far in excess of the average velocity of the other

balls. One of the problems we shall have to solve will be to find how the

velocities of the various balls are distributed about the mean velocity. We
shall find that whatever the way in which the velocities are grouped at

the outset, they will tend, .after a sufficient number of collisions, to group
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themselves according to the so-called law of trial and error—the law which

governs the grouping in position of shots fired at a target.

If the cushions of the table were not fixed in position, they would be

driven back by the continued impacts of the balls. The force exerted on

the cushions by the balls colliding with them accordingly represents the

pressure exerted on the walls of the containing vessel by the gas. Let us

imagine a moveable barrier placed initially against one of the cushions, and

capable of motion parallel to this cushion. Moving this barrier forward is

equivalent to decreasing the volume of the gas. If the barrier is moved

forwards while the motion of the billiard-balls is in progress, the impacts

both on the moveable barrier and on the three fixed cushions will of course

become more frequent : here we have a representation of an increase of

pressure accompanying a diminution of volume of a gas. We shall have to

discuss how far the law connecting the pressure and density of a gas, consti-

tuted in the way imagined by the Kinetic Theory, is in agreement with that

found by experiment for an actual gas.

Let us imagine the barrier on our supposed billiard-table to be moved

half-way up the table. Let us suppose that the part of the table in front

of the barrier is occupied by white balls moving on the average with a large

velocity, while the part behind it is similarly occupied by red balls moving

on the average with a much smaller velocity. Here we may imagine that

we have divided our vessel into two separate chambers ; the one is occupied

by a gas of one kind at a high temperature, the other by a gas of a different

kind at a lower temperature. Returning to the billiard-table, let the barrier

suddenly be removed. The white balls will immediately invade the part

which was formerly occupied only by red balls, and vice versa. Also the

rapidly moving white balls will be continually losing energy by collision with

the slower red balls, and the red of course gaining energy through impact

with the white. After the motion has been in progress for a sufficient time

the white and red balls will be equally distributed over the whole of the

table, and the average velocities of the balls of the two colours will be the

same. Here we have simple illustrations of the diffusion of gases, and of

equalisation of temperature. The actual problem to be solved is, however,

obviously more complex than that suggested by this analogy, for in nature

the molecules of different gases differ by something more fundamental than

mere colour.

One further question must be considered. No matter how elastic the

billiard-balls and table may be, the motion cannot continue indefinitely. In

time, the energy of this motion will be fi-ittered away, partly perhaps by

frictional forces, such as air-resistance, and partly by the vibrations set up

in the balls by collisions. The energy dissipated by air-resistance becomes

transformed into energy in the air; the energy dissipated by collisions is
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transformed into energy of internal vibrations of the billiard-balls. What,

then, does this represent in the gas, and how is it that a gas, if constituted

as we have supposed, does not, in a very short time, lose the energy of

translational motion of its molecules, and replace it by energy of internal

vibrations of these molecules, and energy in the surrounding ether ?

The difficulties raised by this and similar questions formed a most serious

hindrance to the progress of the Kinetic Theory for many years. Attention

was drawn to them by Maxwell, but it was not until the introduction of the

Quantum-theory by Planck and his followers in the early years of the present

century, that it was possible to give anything like a satisfactory explanation.

The explanation supplied by the Quantum-theory will have to be examined

in detail in a later chapter of the present book. It is at best only partial,

but must, so far as it goes, probably be regarded as satisfactory. The ex-

planation is, in brief, that there is no true analogy between the two cases

when we consider questions of internal vibrations and transfer of energy to

the surrounding medium. For the motion of the billiard-balls is governed

by the well-known Newtonian laws, whereas the internal motions of mole-

cules, and their transfer of energy to the ether, are now believed to be

governed by an entirely different system of dynamical laws. The procedure

of this book will be to develop the Kinetic Theory as far as it can be

developed without departure from the Newtonian laws, and then to examine

what light can be thrown on the various outstanding phenomena by the new
system of d3aiamical laws suggested by Planck.

Numerical Values.

8. The foregoing rough sketch will, it is hoped, have given some idea of

the nature of the problems to be attacked. As a conclusion to this pre-

liminary chapter, it may be useful to give some approximate numerical

values. These will give an indication of the order of magnitude of the

quantities with which we shall be dealing, and will make it easier to form

a clear mental picture of the processes under consideration.

Number of Toolecules per cubic centimetre. In accordance with the law of

Avogadro (see below, § 162), the number of molecules in a cubic centimetre

of gas at standard temperature and pressure (0° C. and 1 atmosphere) is

independent of the chemical composition of the gas. This number, which

will be denoted by No, is frequently referred to as Loschmidt's number, and

its numerical evaluation is naturally of great importance for the Kinetic

Theory of Matter. Unfortunately the number is extremely difficult to

evaluate with any great accuracy : many of the uncertainties in the numerical

values used in the Kinetic Theory may be referred ultimately to uncertain-

ties in the estimation of this number. It is fortunate that there are a great
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number of methods available for the determination of Nq, and some of these,

together with the values obtained for N^^, are given below

:

I. From the evaluation of e, the electronic charge :

Charge on a-particles (Rutherford and Geiger) e = 4'65 x 10"^".

(Regener) e = 4-79 x lO"^".

Velocity of particles in field (Millikan) ... e = 4-81 x IQ-^".

Since N^e is the constant of electrolysis, and therefore equal to

1*291 X 10^" units, the corresponding values of N^ are respectively

N, = 2-77 X 10" No = 2-70 x 10^ No = 2-68 x 10^1

II. From the total intensity of the radiation from a black body, using

Planck's formula for radiant energy* :

No= 2-76 x 10»».

III. From measurements on the Brownian movements (Perrin ; Ni refers

to 1 gm.-mol.)

:

Distribution of grains at different heights ... iVi = 68-3 x lO'^l

Velocity of translation of the grains ..

.

... i\ri = 68*8 x 10^.

„ „ rotation „ „ „ iV^i = 65xl02^

Diffusion of the grains iVi = 69 x 10^.

The density of hydrogen (molecular weight 2) at standard temperature

and pressure is '00008987, so that No = -00004493^^1 ; on multiplying the

foregoing values of N-^ by '00004493, the corresponding values of No are found

to be •

No = 3-06 X 10'8, 3-09 x 10^ 2-92 x lO^^, 3-10 x 10^«.

For the purposes of calculations in the present book we shall adopt the

value

iV^o = 275 X 10^

to which correspond the values

e = 4"7 X 10~^" electrostatic units,

Ni = 6"12 X 10^^ the number of molecules in 1 gm.-mol.

Thus at 0° C. and at a pressure of 1 atmosphere (760 mm.), there are

taken to be 2*75 x 10^® molecules per cubic centimetre. Under other con-

ditions the number is of course directly proportional to the density.

The average distance apart of adjacent molecules at atmospheric pressure

will clearly be about (2-75 x 10'»)~^ cms., or 3 x 10"^ cms. At a pressure of

,one-millionth of an atmosphere ('00076 mm.) this distance is increased to

S X 10-* cm?. (-003 mm.).
-cr:-'

* Biohardson, Electron Theory of Matter, p. 856.
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Mass of a molecule. Since we are taking i\ri = 6* 1 2 x lO'", the mass of the

hydrogen atom must be taken to be (6*12 x 10'^)~Vgms. or 1*634 x 10~"gras.

Thus the hydrogen molecule will be of mass 3-3 x 10~**gms., and the masses

of other molecules will be in proportion to their molecular weights ; that of

oxygen for instance is 52 x lO^'^gms.

Velocity. The velocity of the molecules does not depend on the

evaluation of Loschmidt's number, and is known with great accuracy (see

below, § 166).

For air at a temperature of 15° C. the average velocity is about 459 metres

per second. For hydrogen at 0° C. it is about 1694 metres per second. As

regards velocities under other conditions it may be said that, roughly, the

mean velocity of a molecule of molecular weight m, at a teinperature of

6 degrees Centigrade, is proportional to \/273 + 6, and is inversely pro-

portional to Vw, so that, for instance, the velocity of the oxygen molecule is

approximately a quarter of that of the hydrogen molecule at the same

temperature. The velocity is independent of the density of the gas. A table

of velocities will be given later (§ 166).

If all the molecules were moving with a velocity equal to the average

velocity, the total distance described by the 275 x 10^* molecules in a c.c. of

hydrogen at 0° C. would be about 466 x 10" kilometres per second. It will

be seen without trouble that the actual distance, after allowing for the

variation in the velocities of the molecules, is exactly equal to this.

Size. It is a matter of some difficulty to determine or even to define the

size of a molecule. The trouble arises primarily from our ignorance of the

shape and other properties of the molecule. If the molecules were known to

be elastic spheres the question would be simple enough, and the size of the

molecule would be measured by the diameter of the sphere. If, however,

the molecules are assumed as a first approximation to be elastic spheres,

experiment leads to discordant results for the diameters of these spheres,

shewing that the original assumption is unjustifiable. The divergencies arise

not only from the fact that the shape of the molecules is not spherical, but

also from the fact that the molecules are surrounded by fields of force, and in

most experiments it is the extension of this field of force, rather than that of

the molecules themselves, with which we are concerned.

If, however, we agree to regard the molecules as roughly represented by

elastic spheres, it is found that these spheres must be supposed in the case of

hydrogen to have a radius of about 1*2 x 10-» cms. The size ought strictly

to be different for different molecules, and more exact figures will be given

later, but as the difference in size is hardly more than comparable with the

error introduced by the supposition that the molecules are elastic spheres,

these differences need not be discussed here. A full discussion of the
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evidence of the Kinetic Theory as to the size of molecules will be found

in Chapter XIV of the present book.

Number and frequency of collisions. Regarding the molecule of hydrogen

as a sphere of radius 1*2 x 10"^ cms. the number of collisions per cubic centi-

metre of hydrogen at 0° C. is found to be about 1-64 x 10=^ per second.

Free paths. Each collision is the termination of two free paths, hence

the number of free paths described in the gas just considered is about

3"28 X 10^ per second. It has already been said that the total distance

described

—

i.e. the aggregate of these free paths—is 466 x 10^ cms. Hence
on division we see that the mean length of these free paths is 1*42 x 10~®cms.

It is obvious that the mean free path, being a pure length, will depend

only on the diameter of the molecules, and on the number of molecules

per cubic centimetre ; it will not depend on the velocities of motion of the

molecules. Thus the values we have obtained for the mean free path are

approximately true for all gases so long as the molecules are supposed

uniformly to be spheres of radius 1'2 x 10~^ cms. The free path is, however,

inversely proportional to the number of molecules per cubic centimetre of

gas. For instance in a vacuum tube in which the pressure is that of half

a millimetre of mercury, the density of gas is only 1 : 1520 of the normal

density, and therefore the free path is roughly equal to a quarter of a milli-

metre.

It appears from these figures that the mean free path of a molecule is

about 600 times its diameter in a gas at normal pressure, and is nearly

a million times its diameter when the pressure is reduced to half a milli-

metre of mercury. There is therefore every justification for assuming, as

a first approximation, that the linear dimensions of molecules are small in

comparison with their free paths.

Comparing the values obtained for the free path with the values

previously given for the velocity of motion, we find that the mean time of

describing a free path ranges from about 3 x 10"^° seconds in the case of air

under normal conditions, to about 1'3 x 10~' seconds in the case of hydrogen

at a pressure equal to that of half a millimetre of mercury.

The principal lesson to be learned from the foregoing figures is that the

mechanism of the Kinetic Theory is extremely "fine-grained " when measured

by ordinary standards. Molecules are, in fact, not infinitely small, and neither

is their motion infinitely rapid, but the units of space and time appropriate

for the measurement of the motion of individual molecules are so small in

comparison with even the smallest quantities which we can measure experi-

mentally that the phenomena exhibited by a gas constituted in the way

described will be indistinguishable, so far as experiment and human observa-

tion go, from those of a continuous medium.
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There are two other fundamental quantities of which the numerical

values will frequently be required in the present book, namely the mechanical

equivalent of heat, and the absolute zero of temperature.

Mechanical equivalent of heat. The calorie is the number of heat units

required to raise 1 gramme of water through 1° C. at 15° C. In the Recueil

de Constantes Physiques (Gauthier-Villars, 1913), published under the auspices

of the Socidtd Fran9aise de Physique, its most probable value is taken to be

J = 4'184 X 101 In Kaye and Laby's physical constants (1911) its value is

also taken to be J"= 4*184 x 101 The value adopted by the Deutsche

Physikalische Gesellschaft* (1910) is J = 4189 x 10'. For the present book

we take

/= 4184x101

Absolute zero of temperature. The value of the absolute zero of tem-

perature Tq given in the Recueil de Constantes Physiques as most probable is

— 273"09° C. From a lengthy investigation, Callendarf deduces — 273"10° C.

as the most probable value. In the present book we shall adopt the value

To = -273ra

Historical Note.

9. The rise of the Kinetic Theory was of a gradual nature, and it is

difficult to mention any time at which the theory may be said to have

arisen, or any single name to whom honour of its establishment is due.

Three stages in its development may be traced. There is first the stage of

speculative opinion, unsupported by scientific evidence. Given that a great

number of thinkers are speculating as to the structure of matter, it is only in

accordance with the laws of probability that some of them should arrive

fairly near to the truth. An opinion which turns out ultimately to be near

the truth remains, however, of no greater value to the advancement of

science than a more erroneous opinion, until scientific reasons can be given

for supposing the former to be more accurate than the latter. When this

point is reached the theory may be said to have entered upon the second

stage of its development ; the true and false opinions are still equally in the

field, but the former is supplied with weapons for defeating the latter. In

the third stage there is general agreement as to the main foundations of the

theory and their truth, and labour is devoted no longer to defeating adverse

opinion, but to the elaboration of the detail of the theory, and to attempts to

extend its boundaries.

In its earliest stage the growth of the Kinetic Theory is hardly distin-

guishable from that of the atomic theory. The view that matter was to be

* Verhandlungen der Deuttchen Phys. Gesell. xn, (1910), 11, p. 476.

t Phil. Mag. v. (1908), p. 95.
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regarded as an aggregation of hard, indivisible and similar parts was upheld

by Lucretius, who appears to have taken his opinions from Democritus and

Epicurus, who again had been guided by Leucippus. This theory was re-

vived by Gassendi in the middle of the seventeenth century *. Apparently

Gassendi was the first to suspect that the motion alone of the atoms was

sufficient to account for a number of phenomena, without the introduction

of adventitious hypotheses to account separately for these phenomena.

Lasswitzf describes Gassendi's work as follows: "Following Democritus and

Epicurus, Gassendi in the seventeenth century re-established and elaborated

an atomic theory based upon the assumption that all material phenomena
can be referred to the indestructible motion of atoms and can therefore

be described as ' kinetic' Gassendi's atoms are devoid of all qualities

except absolute rigidity ; they are similar in substance, but different in size

and form, and move in all directions through empty space. On this basis

Gassendi explains a number of physical processes, in particular the three

states of matter and the transitions from one to another, in a way very

little different from that of the modern kinetic theory." It is obvious,

then, that with Gassendi the . theory is entering upon the second stage of

its existence.

Twenty years later ideas of the same nature seem to have occurred

independently to Hooke, the recognition of whose work in the foundation

of the Kinetic Theory is due to Professor Tait j.

The next advance in the theory is due to Daniel Bernoulli §, who fre-

quently is credited with having been the first to make the discoveries of

Gassendi and Hooke. In his Hydrodynamica, published in 1738, he points

out that the elasticity of a gas may be regarded as due to the impacts of

particles on the boundary. He deduces Boyle's law for the relation between

pressure and volume, and attempts to find a general relation between pressure

and volume when the finite size of the molecules, supposed absolutely hard

and spherical, is taken into account.

After Bernoulli, there is little to record for almost a century. Then we
find that in rapid succession Herapath|| (1821), Waterston (1845), JoulelT

(1848), Kronig** (1856), and Clausius (1857) take up the subject. Waterston

attempted to found a scientific mathematical theory of the subject; but

* Syntagma Philosophicum, 1658, Lugduni.

t "Der Verfall der kinetischen Atomistik im 17 Jahrhundert," Pogg.Ann. 153, p. 373 (1874).

X "Hooke's Anticipation of the Kinetic Theory," Proc. Edin. Roy. Soc. March 16, 1885.

Tait's Collected Works, ii. p. 122.

§ Daniel Bernoulli, Hydrodynamica. Argentoria, 1738. Sectio decima, "De affectionibus

atqne motibus fluidorum elasticorum, praecipue autem aeris."

II
Annals of Philosophy, [2], i, p. 273.

IT British Association Report, 1848, Part ii. p. 21 ; Memoirs of the Manchester Literary and
Philosophical Society, [2], ix. p. 107. •

** Poggendorff's AnnaUn. ...
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his paper, which was presented to the Royal Society in 1845, contained

certain inaccuracies, and was for this reason not published in the Philo-

sophical Transactions until 1892*, when Lord Rayleigh had it published

on account of its historical interest. Clausius, in his first paper f, calculates

accurately the relation between temperature, pressure and volume, and also

the value of the ratio of the two specific heats for a gas in which the energy

of the molecules is wholly one of translation. In 18o9, Clerk Maxwell was

added to the number of contributors to the theory, reading a paper on the

subject before the British Association at Aberdeen J. It has been sug-

gested that Maxwell was first led to take an interest in the subject by his

investigations on the motion of Saturn's rings, which gained for him the

Adams Prize in 1857§. In the hands of Clausius and Maxwell the theory

developed with great rapidity, so that to write the history of the subject from

this time would be hardly less than to give an account of the theory in its

present form. Among the more prominent contributors to the theory in the

interval between the time of Clausius and Maxwell and the end of the nine-

teenth century may be mentioned Boltzmann, Kirchhoff, Van der Waals and

Lorentz on the continent, and in this country Tait and Lord Rayleigh.

In the interval just mentioned, there had gathered around the theory

what Lord Kelvin
||
called " Nineteenth-century Clouds over the Dynamical

Theory of Heat." Lecturing in the last year of the century, Lord Kelvin

said IF,
" The beauty and clearness of the dynamical theory which asserts heat

and light to be modes of motion, is at present obscured by two clouds." The

first of these clouds had to do with the question of the constitution of the ether,

and need not concern us here ; the second cloud was thrown over the Theory

of Gases by difficulties such as those referred to at the end of § 7. This cloud

has already to a great extent been dissipated by the development of the

Quantum-theory, a theory which will be explained in its proper place in the

present book. It may be remarked here that since the Quantum-theory

came into being in 1901, the growth of the Kinetic Theory has been almost

exactly identical with the growth of the Quantum-theory.

Phil. Tram. 183, p. 1.

t "Ueber die Art der Bewegunjj welche wir Warme nennen," Pogg. Annalen, 100, p. 353.

+ Phil. Mag. Jan and July, 1860 ; Collected Works, i. p. 377.

§ See W. D. Niven, preface to Maxwell's Collected Works, p. xv.

II
Phil. Mag. n. (1901), p. 1.

IT Lecture delivered at the Royal Institution of Great Britain, Friday, April 27, 1900.



CHAPTER II

THE LAW OF DISTRIBUTION OF VELOCITIES

I. The Method of Collisions.

10. The mathematical difficulties of the subject commence when we

attempt to discuss the law according to which the velocities of the mole-

cules are grouped about their mean value. We are of course at liberty to

consider an imaginary gas in which the velocities are grouped at the outset

according to any law we please, but in general every collision which occurs

will tend to change this law. The problem before us is to investigate whether

there is any law which remains, on the whole, unchanged by collisions ; and

if so whether the velocities of the molecules of a gas, starting from some

arbitrarily chosen law, will tend after a sufficient time to obey some

definite law which is independent of the particular law from which the gas

started.

There are two totally distinct methods of attacking these problems, and

these are given in this chapter and the next, the relation between them

being discussed in Chapter IV. The present chapter contains the classical

method of which the development is due mainly to Clerk Maxwell and

Boltzmann (see § 60 below).

The definition of Density.

11. There is no difficulty in defining the density of a continuous sub-

stance. If we take a small volume v, enclosing a given point P, and denote

by m the mass of matter contained within this volume, then the assumption

of continuity ensures that as the volume v shrinks until it is of infinitesimal

size, while still enclosing the point P, then the ratio mjv will approach

a definite limit p, and we define the density at the point P as being the

value of the limit p.

Again, when, as in the Kinetic Theory, the matter is composed of discrete

molecules, there is no difficulty in defining density if the matter is homo-

geneous and if also it can be supposed that there is an infinitely great

quantity of it. In this case, we take a volume V and suppose M to be
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the mass enclosed within it. The homogeneity of the matter now ensures

that as F is increased indefinitely, the ratio MjV will approximate to

a definite limit p, and, as before, we define the density of the matter to

be the value of the limit p.

The gas of the Kinetic Theory will, in general, be neither continuous

nor homogeneous. It will therefore be impossible to frame a general

definition upon the model of the two foregoing definitions, since to do this

we should have to suppose the element of volume to become infinitely great

and infinitely small at the same time. But with reference to the actual

conditions of nature this objection is not serious. We can find an element

of volume which may, without appreciable error, be supposed to be infinitely

great in comparison with the distance between neighbouring molecules, and

at the same time infinitely small compared with the scale of variation of

density of the gas. For instance, the density of a gas may generally be

supposed homogeneous throughout a cube of edge equal to one millimetre,

while such a cube is large compared with the scale of molecular structure,

containing, as has already been mentioned, about 2*75 x 10^" molecules in the

case of a gas under normal conditions of pressure and temperature.

The ratio of the mass contained in an element of this kind, to the volume

of the element, will give the mass-density of the gas. If we substitute

" number of molecules whose centre is contained in " for " mass contained

in," the definition gives the molecular-density of the gas. We shall find it

convenient to denote the mass-density by p and the molecular-density by v.

If m is the mass of each molecule, we have

p = 'rnv (IX

It will be seen that this definition of density is not logically perfect, but

it will be admitted that it is adequate for practical use. The difficulty of

obtaining a logically perfect definition has been discussed by Burbury*. A
similar difficulty is of common occurrence in statistical work : consider, for

instance, the statement " the density of population in parts of London is as

high as 105 per acre."

12. If n is a volume throughout which the density is sensibly constant,

the number of molecules of which the centres are contained within this

volume would, if the foregoing definitions were logically perfect, be D,v. As

the definitions are not perfect, we must examine within what limits the

statement is true, that the number of molecules is D.v. It is certainly not

literally true, for neither H nor v will in general be integers, while the

number of molecules whose centres are contained in the volume ft must

necessarily be integral. In the language of the theory of probability the

statement may be taken to mean that the "expectation" of the number

* S. H. Burbury, Kinetic Theory of Gaaet, p. 3,
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of molecules in the region in question is VLv. Any appeal to the theory of

probability implies that a certain amount of knowledge is given, while we

remain in ignorance of the remaining facts. In this particular case, what is

known is that the molecular density throughout the region H is i/ ; what is

not known is the position of the individual molecules of the gas.

With this understanding it will be permissible to say that the number of

molecules in an element of volume dxdydz selected at random is vdxdydz.

What is meant is that the probability of finding the centre of a molecule

inside this element of volume is vdxdydz.

The definition of the Law of Distribution of Velocities.

13. The difficulties of the last two sections recur when we attempt to

define the law of distribution of velocities. In fact at present we may
consider that a molecule possesses six coordinates—the coordinates in 8pa:Ce

of its centre of gravity which we denote by x, y, z, and the corresponding

velocity components, which we shall denote by u, v, w. In the last two

sections we were virtually discussing the law of grouping of the coordi7

nates x, y, z\ we now have to discuss the law of grouping of the velocities

u,v,w.

Let us take some fixed imaginary point as origin, and draw from this

point a system of lines to represent in magnitude and direction the velocities

of the different molecules of the gas. Referred to orthogonal axes the

coordinates of the extremity of any line will be u, v, w, the components

of velocity of the corresponding molecule. A discussion of the law of distri-

bution of velocities is exactly equivalent to a discussion of the law of density

of these points.

Subject to the limitations mentioned above (§ 12), we can define the density

of these points in the manner already explained. If we denote this density

by T, then, on our former understanding, we can say that the number

of molecules of which the velocities lie between u and w + du, v and v -\- dv, w
and w + dw, is rdudvdiu, where t is the "density of points at the point u, v, w.'*

We shall find it convenient to replace r by Nf, where N is the total number

of molecules of which the velocities have been represented. When it is

necessary to specify the point u, v, w at which / is measured, we shall write

f{u, V, w) instead of /".

To avoid the continual repetition of these limits, let us agree to say that

a molecule of which the components lie between u and u 4- du, v and v + dv,

w and w + dw is a molecule of class A.

14. The total number of molecules of class A is therefore

Nf{u,v,w)dudvdw,
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and since there are N molecules altogether, it follows that the probability

that the velocity of a molecule selected at random shall have components

lying between u and u + du, v and v + dv, w and w + dw iaf{u, v, w)dudvdv).

In accordance with the definition of § 12, we can say that the number of

molecules belonging to class A which are found within the element of volume

dxdydz selected at random is

vf{u, V, w) dudvdwdxdydz (2).

Interpreted literally this statement is unintelligible for dudvdwdxdydz is a

small quantity of the sixth order ; interpreted in the sense already explained,

no exception can be taken either to its intelligibility or truth.

The assumption of Molecular Chaos.

15. Let us imagine that instead of the element dxdydz having been

selected at random, we had supposed it to be an element in the immediate

neighbourhood of a second molecule of which the components of velocity

were known to lie between u' and u' + du, v' and v' + dv\ w' and «;' + dw\

let us say a molecule of class B. We are no longer justified in sajdng that

the probability of finding a molecule belonging to class A inside this element

is given by expression (2). If all the molecules of class A were distributed

at random, and then those of class B were independently distributed at

random, the statement would be true enough. But if the gas is moving in

accordance with the dynamical conditions of nature, it is quite conceivable

that, for instance, molecules possessing nearly equal velocities might tend to

flock together. If this were so the probability we are discussing would be

greater than that given by expression (2) when the velocities of the two

molecules of classes A and B were nearly equal ; in general, it would depend

on u\ v , w\ as well as on u, v, w.

In the case which is discussed in the present chapter—that in which the

molecules are hard elastic spheres— it is usual to assume that the molecules

having velocity-components lying within any small specified limit are, at

every instant throughout the motion of the gas, distributed at random,

independently of the positions or velocities of the other molecules, provided

only that two molecules do not occupy the same space. The legitimacy of

this assumption is not self-evident. Indeed, nothing but a discussion of the

dynamical equations which determine the motion of the molecules can decide

whether the assumption is true or not. Such a discussion will be given in

Chapter IV and the assumption will be proved to be justifiable; for the

present we shall be content to make the assumption, without discussing its

validity.

J. G. 2
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The changes produced by Collisions when the Molecules are

Elastic Spheres.

16. The state of a gas is fully known, from the statistical point of view,

when the density and the law of distribution of velocities at every point of

the gas are known. The main problem of this chapter, which we now proceed

to attack, is to search for a steady state : i.e. a state in which the density and

law of distribution of velocities remain the same at every point of the gas

throughout all time.

We begin by discussing the simplest case. Not only are the molecules

supposed to be hard rigid spheres, but we suppose that the external physical

conditions are the same at every point of space, and that the gas fills infinite

space. The last of these assumptions is a temporary one, which enables us to

consider separately the elements of the problem which are introduced by

the presence of a containing vessel.

Under the conditions now postulated, we may clearly begin by assuming

the gas to have the same molecular density v and the same law of distri-

bution of velocities / at every point of space. Since there is nothing to

distinguish the different regions in space, this uniformity in space will

obviously be maintained throughout all time, but the actual form of the

function / will change with the time.

17. The first problem is to find an expression for the change in the

number of molecules belonging to class A (defined on p. 16) which occurs

during an interval of time dt. Since the motion of the molecules is one of

uniform velocity except when collisions take place, it appears that molecules

can only enter or leave class A through the occurrence of collisions. We
begin by considering molecules which leave class A through collisions.

Let us consider a special kind of collision which we shall call a collision

of class a. This is to be defined as a collision in which the three following

conditions are satisfied

:

(i) One of the two colliding molecules is to be a molecule of class A.

(ii) The second colliding molecule is to be of class B (defined on p. 17).

(iii) The direction of the line joining the centre of the former molecule

to that of the latter at the moment of impact is to be such that

a line drawn parallel to it from the centre of a fixed sphere of

unit radius to the surface of this sphere meets the surface inside

a small element of area dto, this element being such that the

direction cosines of a line drawn to its centre from the centre of

the sphere are I, m, n. ,
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The number of molecules of class A is vf(u, v, w) dudvdw per unit volume,

and each of these is capable of taking part in a collision of class a. Let a be

the diameter of a molecule, and imagine a sphere of radius <t drawn round

each molecule and concentric with it. As the molecule moves, the sphere is

to move so as to remain concentric, but is not to rotate with the molecule.

If a collision of class a occurs, the centre of the second molecule—that of

class B—must lie on this sphere at the moment of impact, and further, since

condition (iii) is to be satisfied, must lie within a small element of surface of

area a'^dw. In figure 1, the sphere of radius a is drawn thick. The other

spheres represent the two molecules just before and at the instant of collision.

Z,m, n

<^./i*.«'

Fig. 1.

Supposing that a collision of class a takes place, we see that before collision

the second molecule must have been moving relatively to the first with a

velocity of which the components, except for infinitesimally small quantities,

were v! — u, v' — v, w' — w; let us say a velocity F in a direction X, fi, v.

Hence at an infinitesimally small time Bt before collision, the centre of the

second molecule must have been upon a small element of area a'rfo) obtained

by moving the element a^du) fi:om an initial position upon the surface of the

sphere through a distance V8t in a direction — \, — /*, —v. If, therefore,

a collision is to take place within an interval dt the centre of the second

molecule must, at the beginning of this interval, have been inside the cylinder

which is described by moving the original element through a distance Vdt in

this same direction.

The volume of this cylinder is equal to its base multiplied by its height.

The former is a-^da>, the latter is Vdt cos 6, where is the angle between the

axis of the cylinder and a perpendicular to the base. The direction cosines

2—2
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of the axis are —\, — fi, —v, those of the perpendicular to the base are of

course I, m, n, so that

cos^ = — {l\-\- rrifi + nv) (3).

The volume of the cylinder is therefore Va^ cos 6 dcodt, so that for any single

molecule of class A, the probability that the centre of a molecule of class B
shall lie within this cylinder at the beginning of the interval dt is, in

accordance with § 15,

vf{u', v', w) dudv dw' Va^ cos Odcodt.

This, then, is the probability for each molecule of class A that a collision

of class a shall occur during the interval dt. The number of molecules of

class A is vf{u, v, w) dudvdw per unit volume, so that the "expectation" of

the total number of collisions of class a which occur in time dt per unit

volume will be

v^f(u, V, w)f{u', V, w) Va^ cos 6 dudvdwdu dv' dw' do) dt (4).

18. We now consider a second type of collision, class /3. This is to

be a type of collision through which a molecule enters into class A, and

is to be defined as a collision in which the three following conditions are

satisfied :

(i) After the collision, one of the molecules is to be of class A,

(ii) After the collision, the second molecule is to be of class B.

(iii) The direction of the line of centres at impact is to satisfy the same

condition as for a collision of class a (p. 18),

The velocities before the collision can be found without trouble. For the

relative velocity can be divided into two parts—the one in the common

tangent plane through the point of contact of the spheres, and the other

along the line of centres. Of these, the former remains unaltered by the

collision, while the latter is reversed in direction, but remains unaltered in

magnitude. Now the normal relative velocity after impact must, in virtue of

^—
' V -i the three conditions satisfied, be the same as for a collision of class a before

^s^^i : impact. It must, therefore, be V cos d. We have, by equation (3),

^^rt. f^( V cos 6=— V{l'\, + infi + nv)

= l(u — u') + m{v — v) + n{w — w').

'""

Let u, V, w and u, v', w' be the components of the velocities of two

molecules such that after a collision along a line of centres having direction

^

^

cosines I, m, n the velocities are u, v, w and u, v, iu\ then by what has just

^'V
,

been said we must have

a=iu —IV cos d = u —[l'^{u —u')-\-lm{v —v')-\- In {w —w')] ...(5),

u' = u' -\- IV cos e = u' -{I'iu' - u) -\-lm{v' -v) -\- In {w' -w )] ...(6).

rJ«f <'
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The number of collisions per unit volume, such that before collision the

components of the velocities lie between u and u + du, etc., and vf and

u' -\-du\ etc., and such that the third condition of p. 18 is satisfied by the

line of centres at impact is, by comparison with expression (4), seen to be

v^fiu, V, w)f(u', V, W) Fo-'' cos dudvdwdu dv dw dmdt (7).

19. These collisions will all belong to class /3, provided that the limits

determined by du, dv, etc., are such that the values of u, v given by equations

(5) and (6) lie within the appropriate limits u and u + du, v and v + dv, etc.

To obtain the whole number of collisions of class y8 we must integrate ex-

pression (7) over all values of u, v, etc., such that the values of u, v, etc., lie

within these limits.

To do this we need only consider the ratio of the two products of differ-

entials dudvdwdu'dv'dw' and dudvdwdv! dv'dw'. We use Jacobi's theorem

that

dudvdwdu'dv'dw'= ± ^dudvdwdu'dv'dw' (8),

where A denotes the determinant

du du du du du du

du' dv' dw' du ' dv' ' dw'

dv dv dv

du' dv' dw
, etc.,

f Using the values given by equations (5) and (6) we find without trouble

that A = — 1. The numerical value of A, which is all that is required, may
in fact be seen without actual calculation. For since equations (5) and (6)

are linear as regards the velocities, the value of the above determinant cannot

depend on the velocities. Also since the relation between the velocities

before and after collision is, on account of the reversibility of the motion, a

reciprocal relation, it is clear from equation (8) that the only possible values

for A are + 1.

Hence, since the ratio in question must necessarily be positive in sign,

equation (8) becomes

dudvdwdu'dv'dw' = dudvdivdu'dv'dw' (9),

and expression (7) may be written in the form

v^ f(u, V, w)f(u', v', vf) F<r'cos Bdudvdwdu' dv'dw'doadt (10).

If this number of collisions is exactly to include all of class yS, the values

of du, dv, dw, du', dv', dw' must be those which occur in the specification of a

collision of class a (p. 18) and therefore those which occur in expression (4).
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20. Suppose that expression (4) is summed over all possible classes of

collisions which can occur to a molecule of class A. Or, what is the same

thing, suppose that expression (4) is integrated over all possible values of

u', v, w' and over all elements of spherical surface dot for which a collision is

possible. Obviously the quantity obtained in this way will represent the

total number of molecules of class A which enter into collision in the interval

dt*. So also expression (10) integrated through the same range of values

gives the total number of molecules of class A which emerge from collision

during the same interval.

The net gain to class A in the interval dt is therefore the difference of

these two integrals, and this is

v^dudvdwdt \\\\\{ff'-ff) Fo-^cos 6 du'dv'dw' da> (11),

in which f, /',/,/' are written for f{u, v, w), f{u', v', w'), f{u, v, w) and

/ {u, v , w') respectively.

21. The number of molecules which belong to class A at the beginning

of the interval dt is known to have been vfdudvdw per unit volume, whilst

the number at the end of this interval may be supposed to be

•' '^*^ dudvdiu.K/4'^0
The gain to class A is therefore

v4. dudvdwdt
at

Equating this quantity to that given by expression (11), we obtain the

equation

^^=v
Ij IIf

{//' -ff) Vcr'cosd du'dv'dw'day (12).

The 'condition for a steady state is that df/dt shall vanish for all values of

u, V and w. No progress can however be made by equating the right-hand

side of equation (12) to zero : the problem of determining the steady state

has to be attacked in a different manner.

The H-theorem.

22. Consider the quantity H defined by

H=
Iff

flogfdudvdw (13),

in which the integration is to extend over all possible values of u, v, w, so that

H is a pure quantity and not a function of u, v, w. This quantity depends

• Not the total number of collisions in which a molecule initially of class A is involved, since

collisions for which both molecules are of class A are counted twice.
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solely upon the law of distribution of velocities and therefore remains un-

changed so long as this law remains unchanged. Hence a necessary condition

for a steady state is given by dH/dt = 0. We proceed to evaluate dH/dt in

the general case.

After an interval dt the value of /log/ corresponding to any specified

values of u, v, w will of course have changed into

/Iog/+|(/log/)d<,

or, what is the same thing, into

/•log/+(l + log/)|cZe.

JJT
Hence the increase in H, which may be written -j- dt, will be given by

dH
dt

and if we substitute the value of dfjdt from equation (12), this becomes

^=
pfljjjjjj

(1 + log/) (//' -ff) Va' cos e dudvdwdu'dv'dw'da>

.

. .(15).

23. Equation (13) regards H as the sum of a number of contributions,

one from each class of molecule, and in this equation class A is taken as the

typical class. If we had chosen class B as the typical class, we might have

written H in the form

dt =
|[[|

(1 + log/) ^^^dudvdwX dt (14),

H = jjjf'logfdu'dv'dw' (16),

and the increase in H, instead of being given by equation (14), would then

have been given by

^=ffj{l + logf)^£du'dv'dii/ '..(17).

To evaluate the right-hand member of this equation we need to know the

value of df'/dt. Now equation (12) regards the change in /as the sum of a

number of contributions, one from every class of collision in which either of

the molecules either before or after impact is of class A, and the t)rpical

classes of collision are taken to be classes a and yS. In a similar way we can

express df/dt as the sum of a number of contributions, one from every class

of collision in which either of the molecules either before or after impact is of

class B. The typical classes of collision may again be taken to be classes a

and y8, and if this is done we obtain for ^'/dt an expression similar to that

given for df/dt in equation (12), except that accented symbols replace un-

accented, and vice versa. In fact molecules of classes A and B exchange

r61es.
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If we now substitute this value for dfjdt in equation (17) we obtain

(cf. equation 15)

^ = v
////////(! + log/0 (//' -ff') V<t' cos dudvdwdu'dv'dw'd(o,

an equation which is of course the same as (15) except that accented and

unaccented symbols are interchanged. If we add together the two values

for dH/dt which have been obtained, we have

dH
dt

= \v
fffffffj

(2 + log#') (//' -ff) V(x' cos edudvdwdu'dv'dw'dto.. .(18).

This equation expresses dH/dt as the sum of a number of contributions,

one from every possible class of collision. The typical class of collision is

taken to be class a, in which

u, V, w, u, v, w
become changed into

M, V, w, u', v, w.

If we use the same equation, but take as the typical collision one of class

/3, in which
u, V, w, u', v, w'

become changed into

u, V, w, u', v, w

,

we obtain, as a still different form for dH/dt,

= \v
IJIIJIIJi2

+ log/7') (ff -ff) V<r'Gosddudvdwdu'dvdw'd(o...(l9).
dH
dt

Equation (9) enables us to replace the product of the first six differentials

on the right-hand of this equation by dudvdwdii'dv'dw', and if we add this

modified value of dH/dt to that given by equation (18) we obtain

"^^^Iv l(lllJI((\ogff'-logff')(ff-ff) Va' cos edudvdwdu'dv'dw'dco
dt

(20).

Now {logff — log//') is positive or negative according as ff is greater

or is less than //' and is therefore always of the sign opposite to that of

// ' —ff. Hence the product

Qogff-\ogff){ff'-ff),

if not zero, is necessarily negative. Since V cos 0, the relative velocity along

the line of centres before impact, is necessarily positive for every type of

collision, it follows that the integrand of equation (20) is always either

negative or zero. Hence equation (20) shews that dH/dt is either negative,

or zero.
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The Solution for a Steady State.

24. In order that the gas may be in a steady state, it is necessary, as

has been already said, that dH/dt shall be zero. Now equation (20), as we

have seen, expresses dH/dt as the sum of a number of contributions, one from

every type of collision, and each contribution is either negative or zero. Hence

for dH/dt to be zero, each contribution separately must be zero. In other

words we must have

ff=ff (21)

for every type of collision.

This condition has been seen to be necessary for a steady state. Equation

(12) shews that it is also sufficient, for if it is satisfied then df/dt = for every

value of u, v and w. The problem of determining the steady state is there-

fore reduced to the problem of obtaining the solution of equation (21). We
shall find it convenient to take logarithms of both sides, and write the

equation in the form

log/+log/ = log/+log/' (22).

25. Let
;)^

be a function of the velocities u, v, w, such that when two

molecules collide, the sum of the %'s appropriate to the two molecules before

impact is equal to the sum of the two ;;^'s after impact. Since 'y^ is, by

hypothesis, a function only of u, v, w, the value of x will remain the same for

every molecule except when it is altered by collision. We may therefore

say that
'x^

is defined as being capable of exchange between molecules at

a collision, but is indestructible ; 2;^ remains the same throughout the motion,

where % denotes summation which extends over all the molecules of the gas.

It is clear that a particular solution of equation (22) is

Further it will be seen that the difference between
;)^
and the most general

solution of (22) is such as to satisfy the conditions postulated for y- Let

Xi> X^' X^> •'• ^^ independent quantities, each satisfying these conditions, and

let it be supposed that there are no other such quantities, then the most

general solution of (22) must be

log/=aiXi + a2%2 + a3%3 + (23),

in which Ui, a^, cc^, ... are independent and, so far, arbitrary constants.

From the djoiamics of a collision we know that there are four quantities

which satisfy the condition in question : namely, the energy and the three

components of linear momentum. These give four forms for ;^: a fifth is

obtained by taking x equal to a constant, and it is obvious that there can be

no others. For if there were any additional form possible for x> there would

be five equations giving u, v, w, u', v', W in terms of u, v, w, u, v', w', so that
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w, V, w, u, v, w would be determined except for one unknown. There must

however be two unknowns, as the direction of the line of centres is unknown.

The general solution of equation (22) is therefore seen to be

log/= ttim {y? \- v^
-V w"^^ -\- a^TYixi -\- fx-iiniv ^ d^mw -\- a^ (24),

The constants Ofg, Wj, a^, 05 may be replaced by new ones and the solution

written in the form

log/= «i^ [(u - Uof + {v- VoY + (w- w^y] + ««

,

or, if we still further change the constants,

f= ^g-Awj[(M-M„)2-f-(tJ-Vo)3+(M)-Woy]
^, (25),

in which A, h, Uq, Vq, Wq are new arbitrary constants.

26. By giving different values to these five constants we obtain all the

steady states which are possible for a gas. The different values of the con-

stants depend upon the different. values of
'^X'^> ^%2> S%3. ^X*' -^%5' *-^-' upon

the total energy, momentum and mass of the gas. We proceed to deter-

mine the relations between these constants and the corresponding physical

quantities.

The value per unit volume of any quantity x summed over all the

molecules is given by

2x = i^[[[%^e-'^'"^("~«»)'+<''"'"')''^<«'-"'°''^(^M(iycZw; (26).

If we write U— Uo= u,

W - Vo = V,

W — Wo = W,

this becomes transformed into

tx = v^\\x^^~^'^^'''^^'^'^'^dud\id\N (27),

and if we further transform variables according to the scheme

u ^ c sin 6 cos <j>

'

v = csin^sin<^ - (28),

w = c cos 6

the equation becomes

2;)^^
= ,.fff^^e-'^'««V sin ^rf^c?<^c?c (29).

If we take % = 1, S% is the number of molecules per unit volume, and is

therefore equal to v. Equation (29) accordingly becomes

J



relation

A

25, 26] The Method of Collisions 27

and since the value of the integral is known* to be ix/rr^s ^^^^ gives the

-^^ (30).

Next put ^ = u in equation (27). We obtain

J — X J— 00 J— 00

and the right-hand vanishes, since the value of the first integral is zero.

Hence 2U=0, or, what is the same thing,

Thus Wo is the mean value of u, and is therefore the a;-component of the mean-

velocity of the gas. Similarly Vo, Wq are the y and z components of this

velocity.

Lastly, let us put %= u^ + v^+ w^. If we substitute this value in equa-

tion (29) we obtain

2 (u" -f- V^ + w'^) = ^irvA \ e-^'^'^-C'dc.
J

The value of the integral on the right-hand is known* to be ^/v/ n^i' ^^^

this leads to

2(u^ + v^ + w^) = |4y^^.,

or, on substituting the value of A from equation (30),

2(u=^-hV^ + w2) = ^j/ (31).'

The kinetic energy per unit volume of the gas is S|m {u^ k-v'^ + w*), and since

2u = Sv = 2w = 0, we have

2^m {u" -f ^2 + w-") = ^mt ((u 4- Wo)' + (v + v^f -I- (w + w^f)

= ^ml {u^ -H V- -1-W +V -I- Vo' + Wo^)

= ^i' + ip(u„»-|-V+0 (32),

where p is the mass-density of the gas, given by equation (1).

We have now determined five relations between the unknown constants

and the density, kinetic energy and momenta of the gas. It appears that for

* For the value of this and similar integrals, see Appendix A at the end of the book.
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given density, kinetic energy and momenta the values of the constants are

unique, h being determined by equation (32), Uq, Vq, Wq by the momenta, and

A by equation (30). Hence there is only one steady state possible for given

values of the density, energy and momenta.

Gas in a closed vessel.

27. This completes the determination of the -steady states of an infinite

mass of gas. We have next to consider the modifications introduced when

the gas is confined in a closed vessel. Supposing the walls of this vessel to

be absolutely rigid and elastic, we shall shew that the law of distribution

already found in equation (25), namely

y= jle-hmliu-Uoy+(v-v,)*+(w-Wo)n (33)^

will still represent a steady state, independently of the shape of the containing

vessel, provided that this vessel is moving with a velocity Wq, Vq, Wq.

To prove this we consider the collisions of molecules with a single small

element of the wall of the containing vessel. Let this element be of area dS

and let the direction cosines of a line drawn perpendicular to' it be I, m, n.

Consider the class of collisions such that the components of velocity of the

colliding molecule before impact lie between

u and u + du,v and v + dv, w and w + dw (34).

As before, let all such molecules be called molecules of class A. Let us, as

on a former occasion (§ 13), take a fixed point as origin and represent the

velocities of the different molecules in magnitude and direction by a system

of lines drawn fi'om this point. All the molecules of class A will be repre-

sented by lines having their representative points inside a certain small

rectangular parallelepiped—the rectangular parallelepiped of which the ortho-

gonal coordinates lie within the limits (34) (see fig. 2 opposite).

Let P be any one of these points, so that OP represents the velocity of

the corresponding molecule. Let OR represent the velocity Uq, Vq, Wq of the

vessel, then RP will represent the velocity of the molecule relatively to the

vessel. After collision with the element dS, the normal component of this

velocity will be reversed, while the tangential component will persist un-

altered. Hence if TR8 is a plane through R parallel to the element dS,

the relative velocity after impact is RP', where P' is the image of P in the

plane TRS.

The small parallelepiped in which P must lie if the corresponding molecule

is to belong to class A will have as its image in the plane TRS a second

parallelepiped which is obviously of the same volume as the former. Let us

denote the two parallelepipeds by a, /3, and when the velocity of a molecule is

such that the line representing it has its end within /3, let us say that the
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molecule is of class C. Then we have seen that a molecule of class A is

changed by collision into a molecule of class C, and from symmetry it is

obvious that the converse is true.

The number of molecules of class A which collide with the element dS in

time dt is equal to the number of molecules of class A which lie within a

certain cylinder at the beginning of the interval dt. Similarly the number
of molecules of class C which collide with dS in the same time dt is equal to

the number of molecules of class C which lie within a second cylinder at the i^v-^"
same instant. ^^.^^^ a^A^ -Ck -^--^i^ri^j^

<^^^c^ At^C^C '-•cry ^\'r,ir-&£.^*^^'L

Fig. 2.

The former cylinder is of base dS and of a height equal to the distance

described by a molecule of class A in time dt measured normal to the element

dS. The second cylinder is of the same base dS, but of height equal to the

distance described by a molecule of class C in time dt measured normal to dS.

Since the normal velocity is the same for a molecule of class A as for one of

class C, the heights of these two cylinders are the same, and since their bases

are the same, their volumes will be the same.

The density of molecules of class A in the first cylinder is, in accordance

with equation (33),

y^g-Amt(«-«<,)H(t.-t>.)'+(«;-wo)«](^.i4^^(^^^



30 The Law of Distribution of Velocities [ch. ii

and since in fig. 2 the coordinates of P are u, v, w while those of R are

Wo, Vo, Wo, we have

RP2 = (-u - u„)2 + (v- V,y + (W- WoY,

and the density of molecules of class A in the first cylinder is

j^jlg-hmBP' X volume of a (35).

Similarly the density of molecules of class B in the second cylinder is

j.jlg-hmBP'-^^ volume of /3 (36).

Now RP = RP', and the volume of a has been seen to be equal to the

volume of ^. Hence the two densities (35) and (36) are equal. Since the

two cylinders have also been shewn to be equal it follows that the number

of molecules of class A which collide with the element dS in the interval dt

is equal to the number of molecules of class C which do the same thing.

Each of the former molecules is changed by collision from a molecule of

class A to one of class C, and each of the latter from a molecule of class C to

one of class A. Hence the number of molecules of class A remains unaltered

by collisions with the element dS. The same is of course true of every other

class of molecule, and of every other element of the surface of the containing

vessel, whence we see that the whole law of distribution is unaltered by the

presence of the walls, or, in other words, that the law of distribution (33)

represents a steady state.

It now appears, however, that there are only the two constants A and h

at our disposal in the case of a gas enclosed in a vessel which is either at rest

or moving with a known velocity Hq, Vq, w^, and these two constants are of

course connected by the relation (30). By varying these constants we are

enabled to assign to our gas different values of the total energy, or, speaking

physically, different temperatures. Similarly by varying v we are enabled to

assign different densities to the gas.

Mass Motion and Molecular Motion.

28. We have seen that the most general " steady state " possible consists

of a motion compounded of a mass-motion and a molecular-motion. The

mass-motion has velocity components Uq, Vo, Wq, the molecular-motion has

velocity components u — iiq, v — Vq, w - w^, which we have denoted (p. 26)

by u, V, w. The number of molecules having molecular velocities lying

between u and u -f rfu, V and V -f- cZv, w and w -f c^w is the number of

molecules having actual resultant velocities lying between u and u + c?U, etc.,

etc., and this by equation (25)

_ ^g-/l»n[(«-Mo)''+(»-»o)H(«'-W„)''']^U(;^y^^
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Hence we may suppose the molecular velocities distributed according to

the law

^g-A«(u»+v^+w^)t^UcZvc^w (37).

If we adopt the scheme of transformation (28) we may replace the velocity

of which the components are u, v, w by a velocity of magnitude c, in a

direction which makes an angle 6 with the axis of z, and such that a plane

through this direction and the axis of z makes an angle <^ with the axis of x.

The law of distribution (37) now becomes

Ae-^^'^c^ sin Odd d<f)dc (38).

This shews that the velocities of molecular motion are distributed equally in

u -^^^k
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all directions in space. The law of distribution of the magnitudes of these

velocities independently of their directions in space is found, upon integration

of expression (38) with respect to d and 0, to be

^'t^Ae-^'^''''&dG (39).

The law indicated by expression (37) can also be written in the form

^ j-g-A^u^u] [e-Amv*(iv] [^-'^'"v^rfw] (40),

shewing that the distributions of u, v, w are independent.
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In fig. 3, the thick line is the curve

while the thin line is the curve

y = e-<

The factor 2 is introduced in the former equation in order that the two

curves may have the same area, namely \ s/ir. The former curve shews the

grouping of the magnitudes of the velocities independently of their directions

in space, the latter that of the magnitudes of a single component.

29. Equation (32) expresses that the total energy of a gas may be

regarded as the sum of the energies of a mass-motion and a molecular-motion.

In the language of the older physics, one would say that the total energy

was partly kinetic and partly thermal. In the language of the Kinetic

Theory, both energies are equally kinetic.

Let us suppose that the containing vessel, which has so far been moving

with a velocity of which the components are Wo, Vq, w^, is suddenly brought

to a standstill. This will of course destroy the steady state of the gas, but

after a sufficient time, the gas will assume a new and different steady state.

The mass-velocity of this steady state will obviously be nil, and the energy

wholly molecular. The individual molecules have not been acted upon by

any external forces except in their impacts with the containing vessel, and

these leave their energy unchanged. The new molecular energy is therefore

equal to the former total energy. These data enable us to determine the

new steady state. In the language of the older physics, one would say that

by suddenly stopping the forward motion of the gas the kinetic energy of this

motion had been transformed into heat. In the language of the Kinetic

Theory, we say that the total kinetic energy has been redistributed, so as now
to be wholly molecular.

An interesting region of thought, although one outside the domain of

pure Kinetic Theory, is opened up by the consideration of the processes by

which this new steady state is arrived at. To examine the simplest case,

let us suppose the gas to be contained in a cubical box, and to have been

moving originally in a direction perpendicular to one of the sides. The
hydrodynamical theory of sound is capable of tracing the motion of the gas

throughout all time, subject of course to the assumptions on which the theory

is based. The solution obtained to the problem from the hydrodynamical

standpoint is that the original motion of the gas is perpetuated in the form

of plane waves of sound in the gas, the wave fronts all being perpendicular to

the original direction of motion. This solution is obviously very different from

that arrived at by the Kinetic Theory. For instance, the solution of hydro-

dynamics indicates that the original direction of motion remains differentiated

from other directions in space through all time, whereas the solution of the
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Kinetic Theory indicates that a state is soon attained in which there is no

differentiation between directions in space.

The explanation of the divergence of the two solutions is naturally to

be looked for in the differences of the assumptions made. The conception

of the perfect non-viscous fluid postulated by hydrodynamics is an abstract

ideal which is logically inconsistent with the molecular constitution of matter

postulated by the Kinetic Theory. Indeed we shall in a later part of the

book be able to shew that the actual viscosity of gases is simply and fully

accounted for by their molecular structure. If we introduce viscosity terms

into the hydrodynamical equations, these equations will lead to a solution in

which the ultimate state is one in which there is no mass-motion in the gas.

On the hydrodynamical view, the energy of the original motion has been
" dissipated " by viscosity. On the Kinetic Theory view, this energy has been

converted into molecular motion. In fact the Kinetic Theory enables us to

trace as molecular motion, energy which other theories are content to regard

as lost from sight.

Gas devoid of Mass-motion.

30. In what follows we may be content to neglect the complication of

mass-motion. We shall suppose that the whole motion of the molecules

consists of its molecular motion of components u, v, w, and we shall put

V? + v"" + w"" = d" (41).

Then we have seen (equations (25) and (30)) that out of N molecules

under consideration, the number having a velocity with components between

u and u -I- du, v and v + dv, w and w + dw is

N \'~\ e-^'^^'^^'"+-^^ dudvdw (42),

while the number having a resultant velocity between c and c + c?c is

47riV (—\ e-^'^^'c^dc (43).

The mean velocity of all the molecules will be the average value of c,

and may be denoted by c. It is given by

"V(^S) ^^^^•

It is convenient to introduce a velocity C, defined as being such that the

,

mean value of c* is equal to G^. The mean kinetic energy of translation of a

molecule is then ^mC, and the total kinetic energy per unit volume of the gas

J. G. 3
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is ^vmG^ or \pG^', it is the same as though the mass p were moving forward

with a velocity G.

3
From equation (31) vG^ is equal to ^y

—

v, so that

^'=2a (''^)-

In terms of G, the average velocity c is given by

^'vc^V©^ ="'''' (*'')

Thus the kinetic energy (and, as we shall see, the pressure also) is the

same as if each molecule had a velocity G equal to 1'086 times the average

velocity.

31. It is frequently convenient, in obtaining rough approximations to

_|lsi the solution of a physical problem, to assume that all the molecules have

,^
exactly the same velocity, and in order that this velocity may be consistent

'^ with the actual values of the pressure and of the kinetic energy, this uniform

i'"' velocity must be supposed to be G.

^ Some idea of the amount of error involved in this approximation may be
^1 '

"

obtained from a study of fig. 3. Since G^ = S/{2h'm), and since hm is taken

'• equal to unity in drawing the curves of fig. 8, the approximation amounts to the

^ ** u assumption that the whole area of the curve is collected close to the abscissa

/3 ^
= ^/ 2 =1-225. -r>- --/,/>'

The approximation is thus seen to be a very rough one.

32. It is sometimes required to know the number of molecules which

at any instant have a speed greater than a given speed Cq. Out of a total

of iV molecules the number which have a speed in excess of Co is, by

formula (43),

and, on integration by parts, this becomes

mw:
In terms of the probability integral, or error function defined by

2 r*
erf a; = —=^ e~*'rfaj,

JttJx
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this number becomes

N(eT(x + -^a;e-'^] (47),

where x = Qimji c^= i^ ^ [^ .

From a table* of values of erf a;, it is easy to calculate the number of

molecules either having velocity greater than any value Co, or within any

range Co to Ci. The general run of the numbers to be expected will be

sufficiently seen by an inspection of the curves of fig. 3.

Numher of Collisions, Mean Free Path, etc.

33. We shall now use the results which have been obtained to calculate

the total number of collisions per unit volume of gas. The number of

collisions is not affected by the mass-motion of the gas, so that we may
continue to take this mass-motion to be zero.

In expression (4) we found the number of collisions of class a occurring

per unit time to be

'^/('^y ^y '^)f{^'y
'^'y '^') ^^^ co^ 6 dudvdwdu' dv'dw dm (48),

and the problem of determining the total number of collisions amounts to

integrating this expression over all values of the variables when f{u, v, w)

has the form appropriate to the steady state, i.e., when

f(u,v,w)=^^e-k-^''' (49).

In expression (48), V is the relative velocity and is the angle between this

velocity and that of the line of centres. If
(f)

is the azimuth of the line of

centres referred to any definite plane through the direction of the relative

velocity, we may, in expression (48), replace dco by sinddddcf). Since collisions

can occur for all values of
(f>
and for all values of 6 from to 7r/2, we must

integrate expression (48) fi:om ^ = to <^ = 27r and from ^ = to — 7r/2.

Performing the integrations, and substituting for/(w, v, w) from equation (49),

we obtain

'^^M-^^"*"""*^'"') y<^^dudvdwdudv'dw' (50),

as the total number of collisions in which the molecules before collision have

velocities lying within the usual limits dudvdwdu'dv'dw'.

Let us now suppose that the variables are transformed to new variables,

given by
M = \{u->r u'), etc., a = u' — u, etc.,

* Values of 1 - erf x are given in the fourth column of the table in Appendix B.

3—2



36 The Law of Distribution of Velocities [ch. ii

so that u, V, w are the components of the velocity of the centre of gravity

of the two molecules, and a, /3, 7 are the components of the velocity of the

second molecule relatively to the first. We have

a(u, a)

1, 1
= 1,

d{(i, u')

so that dudvdvrdad^d'y = dudvdwdu'dv'dw'.

Hence from expression (50) the number of collisions for which the new

variables lie within a range dudYdvidad^dy is

^^,^_^^-hm(c-^+c'^)\ Va'dudvdvrdad/Sdy (51),

in which we have

V^ = (u' - 'iif + {v - vY + {w' - wy = a2 4. ^2 ^. ^2^

c2 + c'2 = 2*2 + ^'2 + ^2 ^. ^'-i + w^ + iv'2 = 2 (u^ + v^ +wO + i (a' + /3^ + 7'),

or, if we write u'^ + v^ + w^ = c^

Let us again transform variables according to the schemes

u = c sin cos
(f),

a = V sin \(r cos
'x^,

V = c sin sin (j>, j3 = V sin -^ sin
'x^,

'

w = c cos 0, y = V cos yjr.

In order that u, v, w may have all possible values, must range from

to TT, ^ from to 27r, and c from to 00 . If, however, we give a similar

range to the new variables in the second scheme of transformation, we shall

be counting each collision twice over. For a collision in which a, /3, 7 have

given values can, by merely changing the rdles of the two molecules, be

regarded as a new collision in which the signs of a, /3, 7 are altered. This

source of error can be eliminated by limiting the integration with respect to

\{r from to 7r/2, instead of from to tt. Hence we obtain, for the number
for which c lies between c and c + dc, while V lies between V and V + dV,

Integrating with respect to c from to 00 , the number of collisions for

which V lies between V and F+ o?F is

8/i-"'mW2 e-hhmv^y6^V,

or v-'o'^ isj"^^'^'"' e-^^^^'VHV (52),

a result which will be required later.
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If we finally integrate this from F= to F= oo , we obtain for the total

number of collisions

i^& J^ (53),

an expression which, on using relation (40), may be replaced by

There are v molecules per unit volume, and each collision terminates two

free paths. Hence the v molecules describe

V27rvV^ (54)

free paths per unit time. *

.

The average duration of a free path is accordingly

1

\/2irva-'c
.(55).

The distance described per unit time by the v molecules occupying unit

volume is vc, and this distance is the aggregate of all the free paths, of which

the number is given by expression (54). By division we find as the length

of the mean free path

-,- = — (56).

If the average is taken in any other way, the result is of course different.

We might for instance average over all the free paths which are being

described at a particular instant of time.

Tait* took a particular instant of time, and defined the mean free path

as the average of the distances described by each molecule between this

instant and the instant of its next collision. He calculated as the value of

the mean free path defined in this way,

•677..

TTva'
.(57),

the factor "677.. arising from an integral of which the value cannot be

calculated in finite terms. We shall return later to the actual calculations

by which this result is obtained.

From the results obtained in this section the numerical values given in

§ 8 can be calculated without trouble.

• Royal Soc. Edin. Tram, xxxni. p. 74 (1886).
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Apparent Irreversibility of Motion.

34. When a gas is not in a steady state, it follows from § 23 (p. 24)

that dH/dt must be negative. Some writers have interpreted this to mean
that H will continually decrease, until it reaches a minimum value, and will

then retain that value for ever after. A motion of this kind would, however,

be dynamically irreversible, and therefore inconsistent with the dynamical

equations of motion from which it professes to have been deduced. As will

appear later (cf §§ 70—73), the truth is that we have at this point reached

the limit within which the assumption of molecular chaos leads to accurate

results. The motion is, in point of fact, strictly reversible, and the apparent

irreversibility is merely an illusion introduced by the imperfections of the

statistical method.



CHAPTER III

THE LAW OF DISTRIBUTION OF VELOCITIES (continued)

II. The Method of Statistical Mechanics.

The Conception of a Generalised Space. •

35. In the last chapter it was twice found convenient to represent the

three velocity coordinates u, v, w of a. molecule, by a point in space of which

the coordinates referred to three rectangular axes were u, v, w. The principle

involved is a useful one, capable of almost indefinite extension, and will be

largely used both in the present chapter and elsewhere in the book.

The space of nature possesses three dimensions, but just as it is open for

us to represent any two coordinates in an imaginary space of only two dimen-

sions, so in the same way we may represent any four coordinates in an

imaginary space of four dimensions. Similarly if a dynamical system is

specified by any number n of coordinates, we can represent these coordinates

in a space of n dimensions, and the various points in this space will corre-

spond to the various configurations of the dynamical system.

In the present chapter, we attempt to find the law of distribution of

velocities by a method which consists essentially in regarding the whole gas

as a single dynamical system, and in representing its coordinates in a single

imaginary space of the appropriate number of dimensions.

Let us suppose that the gas consists of a great number N of exactly

similar molecules, enclosed in a vessel of volume O. At the outset we shall

suppose these molecules to be elastic spheres of the kind already described.

Each molecule will possess six coordinates, the three positional coordinates of

its centre referred to three fixed rectangular axes in the containing vessel,

and the three components of the velocity of its centre resolved parallel to

these three axes. We shall denote the separate molecules by the letters

A, B, G, etc., and the six coordinates of molecule A will be denoted by

^a> Va, Za, «a. ^a, Wft- The wholc gas may accordingly be regarded as a single

dynamical system possessing QN coordinates, namely,

CCa, Va, Za, Ua, Va, Wa, OCb, l/b, ^b, Ub, Vfc, Wft, OCc,... etC (58).
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We can suppose this dynamical system represented in a generalised space

of QN dimensions. The configuration of the system in which the coordinates

are those given by (58) will be represented by a single point in this space,

namely the point of which the coordinates referred to QN rectangular axes

are those given by (58).

36. In this way every possible configuration is represented by a point,

but it does not follow that every point represents a possible configuration.

For instance if as before the diameter of each molecule is a, then a configu-

ration in which

{a;^-x^y^-{ya-yiY+{za-Zj,Y<(T^ (59)

is physically impossible because it represents a configuration in which the

centres of molecules A and B are separated by a distance less than a-—a con-

figuration, therefore, in which parts of these two molecules occupy the same

space. We must therefore suppose the region in which the inequality (59)

is satisfied to be excluded from our generalised space. If we shut off all such

regions, found by substituting for a, h in (59) the suffixes corresponding to all

possible pairs of molecules, we see that every point in the space which is left

will represent a system which is physically possible in so far that no two

molecules overlap.

There is still the boundary to be considered. For a configuration to be

physically possible it is necessary that the centre of each molecule shall be at

a normal distance from the boundary which is greater than the radius of the

molecule. Thus all parts of the space must be excluded which do not satisfy

equations of the form

4>{0Ca,ya,Za)>l<T...etG.\
^^^

(i){xb, yb, zi,)>^a ...etc.] ^ ^'

where <^ (x, y, z) is the shortest normal distance from x, y, z to the surface of

the enclosing vessel.

37. If we exclude all the regions just indicated, it is clear that any

point in the space which remains will represent a configuration of the system

of molecules which is physically possible. In the course of the motion of the

gas, this configuration will give place to other configurations, and by tracing

out this series of configurations in the generalised space, we should obtain a

" path " indicating the motion of the gas. By starting from a great number

of points, and tracing the motion backwards as well as forwards, the whole

space can be mapped out into paths in this way. Since the motion of the

gas is completely determined when all the coordinates (58) are known, it

follows that through any point there is one and only one path ; two paths can

never intersect. Also, of course, the paths are fixed in the generalised space

;
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the motion of a gas, starting from given values of velocity and position

coordinates, is always the same. These paths are identical with the

" trajectories " of abstract dynamics.

The Motion in the Generalised Space.

38. The general nature of these paths can be seen without trouble.

A collision either of two molecules, or of a molecule and the boundary, occurs

when, and only when, a path meets one of the surfaces of the regions

excluded in § 36. Now between collisions every molecule moves with uniform

velocity in a straight line. Thus if at time ^ = 0, the coordinates of a system

are

««', Va, Za, V, Va, W^, x{
, y^ , Zb , V, V Wj' (61),

the coordinates at time t, assuming that no collision has taken place in the

interval, will be given by

Xa = Xa +Uat, Va^Va +Vat, etC,

Ua = Ua, Va = Va, etC.

To find the equations of the path described by the representative point in

the generalised space we eliminate t, and so obtain

Xg — a-'a _ Va — Va _ ^^^
j-

(62),

and since these equations are linear they are of course the equations of a

straight line. We therefore see that the paths in the generalised space are

rectilinear except when they meet the excluded regions. Along the recti-

linear parts of any paths, all the coordinates Ua, Va, Wa, Ub ... etc., maintain'

constant values, and any series of paths for which these constant values are

the same are all parallel. When a representative point, moving along one

of these paths, meets a boundary of the excluded space—corresponding to a

collision— it must be supposed to move along this boundary until it reaches

the point of which the coordinates are those of the system after collision, and

then to start from here and describe the new rectilinear path through this

point.

39. Now in the gas of the Kinetic Theory, we do not know anything as

to the coordinates of the individual molecules of the gas : the problem we

have to attack is virtually that of finding as much as we can about the

behaviour of a dynamical system, without knowing on which of the paths in

our generalised space its representative point is moving.

Our method is therefore to start an infinite number of systems, each

system being a complete gas of the kind already specified, so as to have

systems starting from every conceivable configuration, and moving over
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every path. We then investigate, as far as possible, the motion of this series of

systems, in the hope of finding features common to all. Or, what comes

to exactly the same thing, we shall imagine our generalised space filled

with a dust of points, so close together that they may be regarded as forming

a continuous fluid ; we shall suppose the different points of this dust or fluid

to move along the paths in the generalised space as stream-lines, as directed

by the dynamical equations of the gas, and we shall then examine the

motion of this fluid.

It is obvious that the initial distribution of density of this fluid may be

chosen quite arbitrarily. We therefore choose that the initial distribution

shall be homogeneous. The advantage of this choice is that the fluid remains

homogeneous throughout its subsequent motion. This result follows from a

general theorem which will be proved later (§ 85), but we now proceed to

give a separate proof for the special case at present under consideration.

40. It has been seen that throughout the motion which takes place

between two collisions, all the velocity coordinates w^, Va, Wa, ui,...etc.,

remain constant for any single path.

Consider a series of systems starting simultaneously with the same values

of these velocity coordinates, but having positional coordinates lying between

Wa and osa + dcca, ya and ya + dya, z^ and Za + dza,

Xb and ccf, + dxf, . . . etc (63).

Let these systems move for a time dt, and let it be supposed that no

collision occurs during this interval. Then it is clear that at the end of the

interval the various positional coordinates will have values lying between

^a + Uadt and Xa + Uadt + dxa .

.

. etc., etc.,

while the velocity coordinates of course remain unaltered.

Hence the element of generalised space occupied by these systems remains

unaltered in shape, size and orientation, but has in the course of the time dt

moved parallel to itself a distance Uadt parallel to the axis of Xa, Vadt parallel

to the axis of ya, etc. It follows that the density of the fluid which occupies

this element of generalised space has remained constant through this recti-

linear motion.

Just as rectilinear motion leaves the velocity coordinates unchanged

while altering the positional coordinates, so a collision leaves the positional

coordinates unchanged while altering the velocity coordinates. There are

two types of collisions to be discussed—collisions between molecules and

the boundary, and collisions between pairs of molecules.

As a specimen of the former, consider a collision between molecule A and

the boundary: this leaves all the coordinates unchanged except Ua,Va,Wa>

Considering a series of systems in which before collision all the coordinates
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except Ua, Va, Wa have the same values for each member of the system, whilst

Ua, Va, Wa He between Ua and Va + dua, Va and Va + dva, Wa and Wa + dwc^

we see that after collision all the coordinates will remain unaltered except

Wa, Va, Wa, while theso will lie within a new set of limits. Now in fig. 2

(p. 29) we may suppose the former limits represented by the parallelepiped a,

in which case the latter set will be represented by the parallelepiped /8.

These parallelepipeds have been shewn to be equal in size although in the

present case the orientations are not the same. This proves that the size of

the element of volume of generalised space occupied by the series of systems

now under consideration is unaltered by a collision of molecule A with the

boundary, and hence that the density of the fluid may be supposed to remain

unaltered.

The case of a collision between a pair of molecules may be treated in

the same way. If the molecules are A and B, all the coordinates remain

unaltered except Ua, Va, Wa, Ub, v^, Wf,, and the same result as before follows

at once from equation (9) if we change the notation so as to replace u, v, w
hy Ua, Va, Wa and u', v', w' by u^, v^, w^. For this equation shews that

duadvadwadubdvbdwb remains unchanged by the collision, so that the

element of volume in the generalised space remains the same, and therefore

also the density of the fluid inside it.

Examining the motion of any small element of fluid in our generalised

space, we have now proved that the density of this element remains unchanged

by steady motion and by collisions, i.e., remains unchanged throughout the

whole motion of the gas. It follows that if the whole generalised space is

filled with fluid initially homogeneous, then this fluid will remain homo-

geneous throughout the entire motion. Or, again resolving the fluid into a

dust of representative points, we have seen that there is no tendency for these

points to crowd together, or to spread apart.

41. It has already been remarked that the stream-lines along which the

fluid moves are permanently fixed in the generalised space. This fact,

combined with the result just proved, shews that the motion of the fluid we
are discussing is a " steady-motion " in the hydrodynamical sense.

One further feature of this motion must be noticed. If we denote the

total kinetic energy of any system by E, so that

2E=m(Ua^+Va^ + Wa^ + Ub^+...) (64),

it is clear that E remains constant throughout the whole length of any

stream-line. When E is a constant, equation (64), regarded as a relation

between the Cartesian coordinates of a point in the generalised space, expresses

that the point lies on a certain locus (of dimensions 6iY — 1) in this space.

It follows, then, that the motion of any element of the fluid is confined to

that member of the family of loci J£'= constant, in which it started.
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To obtain some idea of the disposition of this family of loci in our

generalised space, we notice that 2^/m is the square of the perpendicular

distance from

or, what is the same thing, from E = 0. Hence the loci enclose one another,

being in fact a system of tubular surfaces of which the cross-sections

are spherical loci of 3iV dimensions. The tubes do not extend to infinity

along their length. For we pass along a generator of a tube by varying

^a, Va, '^a, iZ^6...etc., and none of these coordinates can become infinite,

because each molecule of the gas is supposed to be contained in a finite

closed vessel. The surfaces E = constant are therefore finite closed surfaces

in the generalised space, the surface E = cc alone being, in the limit, infinite

and enclosing all the others.

Hence the motion of the fluid in the generalised space is one of circula-

tion in closed surfaces, and, in particular, there is no motion of the fluid across

the boundary at infinity.

42. Similarly, if there were any other quantities %i , %2 • • > functions of

the coordinates in the generalised space, which remained constant throughout

the motion of the gas, then the motion of the fluid in the generalised space

would be confined to the loci

%i = constant, %2 = constant, etc (65).

The only quantities of which we know, other than the energy, which

remain constant over a collision between any two molecules, are the three

components of linear momentum, the three moments of angular momentum
and the number of molecules in the gas ; of these the components of momen-

tum both linear and angular are in general changed by a collision between a

molecule and the boundary, and the number of molecules in the gas is not

a function of the coordinates in the generalised space. Thus in general the

energy is the only quantity of which we- know, satisfying the conditions in

question.

An exception to this may occur if the vessel containing the gas is a

figure of revolution, having its interior surface perfectly smooth. For then

there is always a component of momentum which is not changed by a collision

between a molecule and the boundary ; namely, that parallel to a tangent to

the containing vessel at the point at which the collision takes place. In this

case, then, the moment of momentum of the whole gas about the axis of

figure of the containing vessel remains constant throughout the motion.

It will, however, be convenient to defer the consideration of special cases of

this type until Chapter V.
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The Partition of the Generalised Space—Positional Coordinates.

43. We have supposed the volume of the containing vessel to be CI.

Let us now suppose the vessel divided up in a number n of " cells " each of

the same volume to, so that nco = fl. These cells will be referred to as cell 1,

cell 2, ..., respectively. The different possible configurations of the gas may
be classified according to the number of molecules of which the centres fall

within the different cells. As a typical class, we consider a class such that ai

molecules have their centres in cell 1, a^ in cell 2, and so on. Let this class

be referred to as class A. We proceed to examine what proportion of the

whole of the generalised space represents systems of class A.

Let us, for the present, suppose that the radius of the molecules is vanish-

ingly small, so that those parts of the generalised space excluded by the

conditions of § 36 may be neglected. Then the representative points of

systems which are such that the centre of the molecule A lies within a single

specified cell,

—

i.e., is restricted to a range to out of the whole volume D, of

the containing vessel—will clearly occupy a fraction (o/fl of the whole of the

generalised space. Since nco = D,, this may be written n~^. If two molecules

A and B both lie within specified cells, the representative points occupy a

fraction n"'^ of the whole, and so on. Thus if each of the N molecules lies

within a specified cell, the representative points will occupy a fraction n~^ of

the whole of the generalised space.

Now the number of different ways in which the JSf molecules can be

assigned to the n different cells, so that the system shall belong to class A,

defined as above, is

a,\a^\a,\...anl
^^^^'

in which, since the total number of molecules is N,

ai + a2 + a3+ •• +an= N (67).

It follows that the representative points of systems of class A will occupy

a fraction, say da, of the whole of the generalised space, given by

. N\n-^
Oa= -

, , ,
, (68).

Similarly the representative points of systems of any other class, say B,

will occupy a fraction di of the whole of the generalised space, given by

b,\b,\b,l...bn\'

The sum of all such expressions must of course be equal to unity.

44. We have already supposed N to be great ; we now suppose that

tti, tta, Os ••• «n separately are very great. This enables us to express (68) in

a simpler form, by using the well-known theorem of Stirling,

0i>
=

p—oo

'pU pl = ^2p7r(^] (69).
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On taking logarithms of both sides, this becomes

LMogjo! = ilog27r + (;j4-i)logp-p (70).
p — oa

Taking logarithms of both sides of equation (68),

log Oa = log iV !
— X log ag\—N log n,

and in the limit, when a^, a^ ... an, N are all infinite, this may, in virtue of

equation (70), be replaced by

.\ogea = k\og2'Tr + {N+\)\ogN- N
s=n

- 2 {^log27r + (a« + |)logas-a4-iVlogw.

Now Sttg = N, so that 2 (ag + |) = N+^n, and hence it will be found that

the foregoing equation may be transformed into

\ogda = l\ogn-'^\og2'rrN-T{as + ^)\og'^ (71).

It is convenient to write

Ka^jYias + mog"^ (72),

so that da, the fraction of the generalised space which represents systems of

class A, is given by

^« = n*"(27ri\r)-i(-i)e-'^^« (73),

an expression which, it will be noticed, involves the a's only through the term

Ka in the exponential.

45. To examine the way in which 6a varies for the different classes of

configurations (A, B, etc.) it is sufficient to study the variations of Ka given by

equation (72).

For the moment, let tti, ag, ... be regarded no longer as integers, but as

continuous variables, subject only to condition (67),

a, + a^+ ... = N (74),

and let Ka be treated as a continuous function of these variables, defined by

equation (72). We search first for maximum or minimum values of K. By
variation of equations (72) and (74),

= TSa, (76).
«=i

The values of a^, a^, ... for which K has stationary values will be those

for which ZK vanishes for all values of ha^, Ba^, ... which satisfy relation (76).

The vanishing of BK therefore requires that the coefficients of Sai, Ba^, ... in
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equation (75) shall all be equal, and this in turn requires that a^, a^, ... shall

all be equal.

Thus there is only one set of values of the a's for which K is stationary,

and it is given by

a, = a, = ... = - (77),

the quantity N/n being obtained from relation (74).

We next examine how K varies for values of a near to these values. An
adjacent set of values will be

«i =—f-oti, a2 =—l-Oa, etc (78),
n n

where the a's are small compared with N/n, and

ai + a2+... = (79),

in order that equation (74) may still be satisfied.

For this distribution of molecules in the diflferent cells, we find for the

value of Ka, from equation (72),

rjr 1 %"" (N 1\ , (^ na,

jy / not\
Since N and — are both very great, and log

( 1 + -t^ is very small,

N 1 ^ N- + o by -
n 2 "^ n

we may replace ~ + s by — , and so obtain

''^-n^.A^^i^r^i^^-F) («^>

From this it is clear that K vanishes when o^ = ttj = . . . = 0, while for

small values of the «'s, K is invariably positive. Thus the stationary value

which has been found for ^ is a true minimum ; further, as it was seen to be

the only stationary value for K, it follows that K increases steadily as we
recede from it, and so must be everywhere positive except at this minimum.

In the expansion (81), the ratio of each term to the preceding is of the

order of ^- , which is small so long as a is small compared with N/n.

Thus for small values of a, Ka is represented by the first term of (81).

When o becomes comparable with N/n, the terms in (81) all become of the

same order of magnitude, but NK is now of the order of magnitude of N/n,

and so is very great. For such values of o, therefore, e~^^" is vanishingly

small, so that 0a, given by equation (73), is also vanishingly small. Thus

arrangements of molecules for which the a's are comparable with N/n only
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occupy an infinitesimally small part of the generalised space. For all the

remainder, the a's are small compared with Njn, and K^ is given by

NK, = \-^la,^ (82).

46. The number of distributions of molecules for which NK is less

than some assigned value NK^, which is itself not infinite, will be equal to

the number of sets of integral values of Sj, 0L2, ..., such that (cf. equation (82))

a,^ + a,^+...«J<^^^ (83),

while the sum of the a's vanishes.

Imagine Oj, ofa. • • • «n to be Cartesian coordinates in a space of n dimensions,

then integral values of the a's occur at the rate of one per unit volume.

The sets of values for which aj + aj + • • • °^n = 0, all occur in the plane of

which this is the equation. It is a plane through the origin having direction

cosines n~'^, n~^, ... n~^. Thus sets of integral values in this plane occur at

the rate of ri''^ per unit content of this plane. If A is the content of that

part of this plane in which inequality (83) is satisfied, then the number of

sets of values for which we are in search is n~^A.

The quantity A is (cf. equation (83)) clearly the content of a sphere (or

circle) of (n — 1) dimensions and of radius (
——^ ) . Its value is accordingly

A =
p/« + l

2

The number sought, namely the number of distributions for which K is

less than K^, is n"^A or

T \ir) ^^'^^'

p/w+
2

On differentiating with respect to K, the number of distributions for

which K lies between K^ and K^^ + dK is found to be

N'n 2(n-l) ? dK (85).

r(^)

47. Multiplying this by d^^, given by equation (73), we find as the

fraction of the original generalised space which represents distributions of

molecules for which K lies between Kq and K^ + dK,

^ =-e-^^«^o*^"''^^^ (86).
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It is easily verified that the integral of this from K = 0to K= cc is equal

to unity, as of course it ought to be (cf § 43). Thus expression (86) gives

the law of distribution of values of K in the generalised space, or, to put

the same thing in another way, it expresses the chance that a system selected

at random from all the representative points in the generalised space shall

have a value for K intermediate between Kq and Kq + dK.

If X is written for NK, the law of distribution (86) becomes

g-*^i(n-3)^^.
(37)^

p !n - 1

while X is from equation (82) given by

^ = ^^2a/ (88).

48. Clearly expression (87) only has appreciable values when x is

finite : the contribution to the whole integral which is supplied by infinite

values of x is infinitesimal. The mean value of x is

i--— [e-*^'^("-'^d;r = -i(^-l) (89).
n

2

Thus for all except an infinitesimal fraction of the systems represented

in the generalised space x, or NK, is finite, so that K is zero. Also the

mean value of x for all systems is \{n- 1), so that the mean value of K is

i(n-l)/iV.

Hence for all except an infinitesimal fi'action of the systems 'Za.^ is com-

N . . N
parable with — , so that each oC^ is comparable with — , and the mean value

„ •
1 .• N{n-1)

01 any single a'^ is —^—^

—

-

.

If p is the mean density in the gas, and if in any cell the density is

p{l + B), then 8 = anjN from equations (78). Thus in all except an infini-

tesimal fraction of all the systems P is comparable with -^, and the mean

value of S^ is N
To sum up, we have discovered a very strong tendency towards an equal

distribution of density. In all except an infinitesimal fraction of the systems,

the variations of density in the different cells will only be of the order of

IjN of the whole. Since we are supposing N to be so great that 1/iV may
be neglected, we may say that in all except an infinitesimal fraction of the

systems there is uniform density throughout the gas.

J. G. 4
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49. Let the cells, each of volume to, now become infinitesimal and

coincide with the different elements of volume dxdydz in the gas. The
mean molecular density v^ in the whole gas is equal to iV/H, and the

molecular density Vg in the 5th cell is such that

ttg = Vg dxdydz.

As in § 45, we may neglect the difference between ttg and ag + ^, and may
accordingly replace equation (72) by

iir = ^S:a«log^

= -ni^^:^^^E[^]daidydz
IL 1 I'o \Vq/

-hlJUB'^^O'^'^''^ (90),

where the integral is taken through the whole gas.

Thus K is the mean value of — log ( - ]
averaged through the gas. When

the variations from uniform density are small, so that v may be replaced by

Vo + Sv, the value of K becomes

^=ml!IO'^'^!"'''
•• (91)'

as could also be seen from equation (82). Thus K is equal to the mean

value of (— )
averaged through the gas, and so is a quantity which might

naturally be taken to measure divergence from uniform density.

The Partition of the Generalised Space— Velocity Coordinates.

50. We can investigate the partition of the velocity coordinates in a way

similar to that used for the partition of positional coordinates.

As in I 13, we take a three-dimensional space, and represent the velocity

of each molecule by a point such that its coordinates in this space are u, v, w,

the components of velocity of the molecule. In this way we get N points in

this three-dimensional space, and their positions determine the velocities of

all the molecules in the gas.

The space now under consideration will extend to infinity in all directions,

for the values of u, v, w for any molecule can vary from — oo to + oc . We
shall, however, find it unnecessary to take the regions at infinity into account.

We shall ultimately be concerned only with systems in which the total

kinetic energy of the N molecules has an assigned value E, and for these

systems there is an upper limit to the values of v, v, w, fixed by the
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cireu'mstance t?hat the energy of any one coordinate, ^mu^, ^rmf or i?nw',

cannot be greater than E. Thus if we put P=— , we can suppose the three-

dimensional space in which the velocity coordinates are represented, to be

limited by the planes u=±l,v = ±l,w=±l. And equally the original QN-
dimensional space can be considered limited by the planes Ua= ± I, Va= ±1,

tu„ = ± I, Ub = ±1, etc. With these limitations, it is clear that the three-

dimensional space is exactly suited to represent the velocity coordinates

of all systems in the 6i\^-dimensional space which are of the assigned

energy E.

51. The three-dimensional space, of volume 8Z^ may now be thought

of as divided into a very great number n of very small cells, each of content

f.> or dudvdw. We consider a definite partition of velocities, such that the

number of points in cell 1 is aj, in cell 2 is ag, and so on, where of course

aa + a^ + ... + an = N (92).

This will be called a partition of class A.

We can shew, exactly as in § 43, that the systems of class A will occupy

a fraction 0^ of the original generalised space of QN dimensions, where (cf.

equations (68) and (73))

AT"
' n-^

= n*"(27riV^)-*('*-^)e-^^« (94),

where K^ = j^l a»log-^* (95),

since the term | in equation (72) may be neglected in comparison with a«.

And, as before, the partitions which are commonest are those for which

Ka is least.

52. If we proceeded to find which partitions were commonest in the

whole 6i\r-dimensional space, we should naturally be led to the same result as

in § 45. But what we now want is to find which partitions are commonest,

not for all the systems in the space, but only for those systems of which the

energy is E.

When a molecule has its velocity components represented by a point in

cell 1, let us suppose its kinetic energy to be ej; when the point is in cell 2

let the energy be eg, and so on. Then the total kinetic energy of the iV"

molecules will be Ojei + 0362 -I- ... -1- a,ie„, and this will, for the systems under

consideration, be equal to E. Thus we must suppose aj, ««,... a„ limited not

only by equation (92) but also by the equation

ai6i -I- Ogea 4- .., + an€n=E (96).

4—2
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53. We proceed to find for what distribution K^ is least, when the values

of the as are subject to the restrictions of equations (92) and (96). By
variation of equations (95), (92) and (96) we obtain

NBK,= l.^(\og~'+lJ8a, (97).

= 'X Sus (98),

0= S €s8as (99).

Thus the stationary values of K are given by equations of the type

log^* + H-\ + /.e« = (100),

where X,
fj,

are multiplying constants.

The density of points in the three-dimensional u, v, w space may, as in

§ 13, be denoted by t or Nf. Thus we have

ttg = TO) = Nfw = Nfdudv dw,

so that -^ = 7ifco =fVl',

where 11' = nw, the total volume ^P of the u, v, w space.

Hence, changing the constants, equation (100) assumes the form

or, in terms of the coordinates u, v, w,

f{u, v, w;)=^e-'^"»(«'+^'+«'') (101),

which agrees, as of course it ought, with the law of distribution already

obtained by the method of collisions in Chapter II.

54. It could now be shewn, exactly as in the former case, that throughout

all but an infinitesimal fraction of the whole of that part of the generalised

space in which the energy of the corresponding system is E, the law of

distribution of velocities is that given by equation (101). It does not seem

necessary to reproduce the details of this proof; the mathematician will be

able to construct them for himself, while the physicist will probably not wish

to be detained over them.

As in the case of the positional coordinates the law of distribution of

velocities could have been predicted from considerations of probability.

For selecting a point at random in the region corresponding to systems of

energy E is equivalent to assigning velocity coordinates u, v, w to the

molecules at random, subject only to the condition that their squares shall

be distributed about a certain mean-value. It is therefore natural to find

that the distribution of velocities should be in accordance with the law of

trial and error.
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55. The value of Ka is (cf. equation (95))

^=:!:(i)'°^(f)'

in which -^ =/^', ^ = /eu = fdudvdw, and S (-^j = 1. Using these

relations, we find

K = log Df +\\\f log fdudvdw,

where the integral is taken through the volume O' in the u, v, w space, and

since /= outside this volume, the integral may equally be thought of as

extending through the whole space.

It now appears that except for an additive constant, K is identical with

the H of the method of the last chapter (cf equation (13)). The theorem

proved there, that H tended continually to decrease, is now seen to mean

that K tends to decrease and therefore da tends to increase. In other words,

in its passage to the final state, a gas tends always to pass from the less

probable to the more probable state, or, we may say, from the abnormal to

the normal, where the most normal states are regarded as being those Avhich

occur most frequently in the 6i^-dimensional space.

56. The law of distribution of velocities expressed by equation (101) is a

special case of the general law found for the "steady state" in the last chapter.

We are limited to this special case because we have, at the outset, supposed

our containing vessel to be fixed in space. If, on the contrary, the vessel is

moving in space with a velocity of components u^, v^, Wq the analysis of this

chapter can be made to apply by supposing all coordinates referred to moving

axes, moving with a velocity of components Ua, v^, Wq. In this case equation

(101) expresses the law of distribution of velocities relative to these moving

axes. The law of distribution of absolute velocities in space is therefore

y=:^g-AOT[(M-«„)2+(v-V„)«+(w-Wo>'] (102),

which is the general law for the steady state given by equation (25).

This law, it will have already been noticed, gives /= when u,v or w is

infinite. There is therefore the a posteriori objection to the analysis by

which it has been obtained, that if we divide all possible velocities into

"cells" in the manner of § 51, the number of molecules in some of these

cells cannot legitimately be treated as very great. The difficulty is best

met by taking a definite velocity V such that those molecules of which the

velocities do not satisfy the inequalities

u<V, V <V, w <V
form an infinitesimal fraction of the whole. If the velocities which satisfy

these inequalities can be partitioned into cells in the manner of § 51, so as to
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satisfy the condition that the number in each cell is very great, then there

is no further difficulty, and equation (102) will give the law of distribution of

velocities which are less than V. The law now has no meaning for velocities

greater than V. It is obvious, for instance, that the law expressed by

equation (102) does not impose any upper limit whatever on the possible

values of u, v and w for a single molecule, whereas in point of fact such a

limit is definitely imposed by the energy equation.

Molecules of finite size.

57. It is obvious that it is in no way material to the analysis of

§§ 51—53, from which the law of distribution of velocities is found,

whether the regions mentioned in § 36 are excluded from the generalised

space or not. For the exclusion of these regions affects the velocity

coordinates equally throughout. Thus the law of distribution of velocities

is the same whether the spheres are of finite size or are infinitesimal. It

remains the same right up to the extreme limiting case in which the spheres

are packed so tightly in the containing vessel that they cannot move.

The Normal State.

58. In the last chapter it was found, with the help of the unwarranted

assumption of molecular chaos (§ 15), that the law of distribution expressed by

equation (102) represented a "steady state" for the gas. In the present

chapter it has been shewn, without making any use of this assumption, that,

except for an infinitesimal probability of error, a system selected at random

from the generalised space will be in the state specified by equation (102).

It will be convenient to refer to this state as the "Normal State" (cf below,

§ 87). And when a result is certain except for an infinitesimal probability of

error, it will be convenient to speak of the result as "infinitely probable."

If, therefore, a system is selected at random, it is infinitely probable that

it will be in the "Normal State." Suppose that a system is selected at

random, and then allowed to move under its natural motion for a time t,

what do we know now as to its probable state after a time t ? The answer is

provided by the theorem proved in § 40. The motion of all possible systems

is represented in our generalised space by the motion of the supposed fluid.

Instead of selecting a system at random and allowing it to move for time t,

we may allow the whole fluid in the generalised space to move for a time t,

and select a system at random after the motion has proceeded for a time t.

The theorem of § 40 proved the motion of the fluid in the generalised space

to be a "steady motion." Hence selecting a system after time t is the same

thing as selecting a system at time 0, and it is infinitely probable that the

system thus selected will be in a normal state.
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59. This completes our information about the motion of the gas. At

any instant it is infinitely probable that it is in a normal state. In the

course of the motion departures from the normal state will occur, but it is

infinitely probable that these will only occupy an infinitesimal fraction of the

time occupied by the whole motion.

There is in theory a possibility of a gas continuing throughout its motion

in a state different from the normal. Suppose for instance that the contain-

ing vessel is cubical, and that the molecules are started so that all move

perpendicular to one edge along a system of parallel lines, no two of which

are at a less distance than the diameter of a molecule. Then it is obvious

that the molecules will not leave the lines on which they start, and will not

change their velocities. In this case any law of velocities f(u, 0, 0) will be

permanent, where u is the velocity in the direction of the parallel lines.

The analysis of this chapter breaks down, it will be seen, because the

supposition made in § 42 is no longer true, that there are no functions of the

coordinates in the generalised space except the energy which remain constant

throughout the motion. For obviously we have Ugj' = constant, U},^ = constant,

etc., and w„ = ^Uf^ = 0, vo = iVb = 0, etc.

Our results shew that it is infinitely probable that a system selected

at random will not be of this special type. The connection between the

trajectories of such systems and the "periodic orbits" of abstract dynamics

is interesting, but cannot be discussed here. We shall return to the dis-

cussion of cases in which there are constants other than the energy in

Chapter V.

Historical Note.

60. The law of distribution of velocities which has been found both in

this chapter and the preceding one was discovered by Maxwell, and is

generally associated with his name. It first appears in the paper already

referred to (§ 9), communicated to the British Association in 1859. The

original proof is now universally admitted to be unsatisfactory, but is of

interest from its historical importance. Except for a slight change of

notation, the form in which it was given is as follows*.

" Let Sf be the whole number of particles. Let u, v, w be the components

of the velocity of each particle in three rectangular directions, and let the

number of particles for which ii lies between u and u + du be Nf{u) dii,

where f(u) is a function of u to be determined.

" The number of particles for which v lies between v and v + dv will be

Nf(v) dv, and the number for which w lies between w and w +dw will be

Nf{w)dw, where / always stands for the same function.

* J. C. Maxwell, Collected Works, i. p. 380.
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" Now the existence of the velocity u does not in any way affect that of

the velocities v or w, since these are all at right angles to each other and

independent, so that the number of particles whose velocity lies between

u and u + du, and also between v and v + dv and also between w and w + dw is

Nf{u)f{v)f{w) dudvdw.

If we suppose the K particles to start from the origin at the same instant,

then this will be the number in the element of volume dudvdw after unit of

time, and the number referred to unit of volume will be

Nf{u)fiv)f{w).

" But the directions of the coordinates are perfectly arbitrary, and there-

fore this number must depend on the distance from the origin alone, that is

f{u)f(v)f(w) = <t>{u' + v' + w').

Solving this functional equation, we find

f(u) = Ce^^\
<f>

(li' + V' + w^) = CV (u"-+v^+w^)j>

This proof must be admitted to be unsatisfactory, because it assumes the

three velocity components to be independent. The velocities do not, however,

enter independently into the dynamical equations of collisions between

molecules, so that until the contrary has been proved, we should expect to

find correlation between these velocities.

On account of this defect. Maxwell attempted a second proof*, which

after emendations by Boltzmannf and Lorentz;]: assumes the form given

in Chapter II. It is however very doubtful whether this proof can claim

any superiority on grounds of logical consistency or completeness over

Maxwell's original proof. The later proof finds it necessary to assume that

there is no correlation between the velocity and space coordinates, while the

earlier proof merely assumed that there was no correlation between the

separate velocity components inter se. In each case the dynamical conditions

equally suggest correlation until the contrary has been proved, and it would

be hard to give reasons why one assumption of no correlation is more

justifiable than the other. It should be mentioned that Burbury§ was

always of opinion that the later proof of Maxwell was not only logically

unsound, but led to an inaccurate result. He maintained that correlation

actually takes place, except in the limiting case of an infinitely rare gas.

This view, however, is not borne out by the analysis of the present and of

the succeeding chapter. (Cf § 69, infra.)

* Collected Works, ii. p. 43.

t Wiener Sitzungsber., lviii. p. 517 (1868), lxvi. p. 275 (1872), xcv. p. 153 (1887), Vorlesungen

ilber Gastheorie, i. p. 15.

X Wiener Sitzungsber., xcv. p. 115 (1887).

§ S. H. Burbury, The Kinetic Theory of Gases, Cambridge, 1899.
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A second class of proof of the law is represented by the proof which has

been given in this chapter. In this class of proof the aim is to deduce a law

from general d3niamical considerations. As important examples of this class

of proof may be mentioned a proof due to Kirchhoff, given in his lectures*,

and one due to Meyer and Pirogoff, given in Meyer's Kinetic Theory of

Gases\. Both these proofs are found on analysis to depend upon a use of

the calculus of probabilities which cannot be justified. The proof given in

this chapter is my ownJ: it also has been criticised by Burbury§, but

I cannot persuade myself that his criticisms as to the validity of the proof

are well founded ||.

* Kirchhoff, Vorlesungen ilber die Theorie der Wdrme, p. 142.

t Meyer, Kinetic Theory of Gases, Eng. Trans, by Baynes, p. 370.

J Phil. Mag. v. p. 597.

§ Phil. Mag. vi. p. 529, vii. p. 467.

II
Phil. Mag. vi. p. 720, vii. p. 468.



CHAPTER IV

THE LAW OF DISTRIBUTION OF VELOCITIES (continued)

Comparison between the Methods of the two preceding Chapters.

61. The problem of the present chapter will be to consider the relation

between the methods of procedure adopted in Chapters II and III.

The discussion of Chapter II was based upon certain questions of prob-

ability, and an answer to these questions was made possible and was ob-

tained by the help of the assumption of molecular chaos enunciated in § 15.

The discussion of Chapter III also rested, although in a different sense,

upon the theory of probability. The generalised space filled with fluid

supplied a basis for the calculation of probabilities, and as the motion of the

fluid was proved to be steady-motion, it followed that this basis was inde-

pendent of the time. For the present, we continue to take this generalised

space as the basis of probability calculations. The question " What is the

probability that a system satisfies condition jp
?" will be taken to mean: "For

Avhat proportion of the generalised space is condition p satisfied?" The

further question :
" Given that a system satisfies condition p, what is the

probability that it also satisfies condition qV will be interpreted to mean:
" A point is selected at random from all those parts of the generalised space

in which condition p is satisfied : what is the probability that at this point

condition q also is satisfied ? " And if v^, is the total volume of that part of

the space in which condition p is satisfied, and Vpq that of the space in. which

condition q also is satisfied, the value of the probability required is of course

the ratio

^ (103).
Vp

If V is the whole volume of this generalised space (or any part of it to

which we choose to limit our consideration) the chance that condition q shall

be satisfied independently of condition p is

^ (104).
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Hence the condition that the probabilities of p and q being satisfied may be

regarded as "independent" is that expressions (103) and (104) shall be equal,

or, written symmetrically, that

Vpq_XJpVq
(105).

V V V

Analysis of the Assumption of Molecular Chaos.

62. The assumption of molecular chaos was tantamount to an assumption

that two probabilities might be regarded as independent. Equation (105)

accordingly enables us to test whether this assumption is legitimate or not

relatively to our present basis of probability—namely, the generalised space

filled with homogeneous fluid.

To do this, let us define condition p as the condition that a molecule

of class A (defined in § 13) shall be found in the element dxdydz of the gas

—

in other words, that one of the N molecules shall have coordinates lying

between the limits

X and X + dx, y and y + dy, z and z -^^ dz

u ?\xA vb -\- du, V and y -f c?v, w and w + cZwJ

For certain systems this condition is satisfied by molecule A, and these

systems are represented in the generalised space by that region for which Xf^

lies between x and x + dx, and for which similar conditions are satisfied by

2/a> •2^o> ^o> ^a; ^a- This region supplies to Vp a contribution of amount

dx^dxjfdxc ... du^dubdue (107),

where the integration extends over all values of the variables which are not

excluded by § 36, except in the case of Xa, ya, ^a, u^, v^, w^, for which the

limits are those given by (106). The integral may be written in the form

dxdydzdudvdw
j

I ... dxi,dxe...l dub
j

diic (108).
J J J— CO J —CO

For other systems, condition p is satisfied by molecule B, and these systems

again supply a contribution of amount equal to the above. Each of the N
molecules contributes in this way to Vp an amount equal to that given by
expression (108), so that the total value of Vp is

Vp = Ndxdydzdudv dw
j

j
... dx^dxc ... I du^ \ dug (109).

The value of v, the volume of the whole space, is given by (107), if the

integrals are taken through all values of all the variables except those values

excluded by § 36. This integral may of course be written in the form

v = jjl ...dxg^dxbdxe... j dua dui, (110),



60 The Law of Distribution of Velocities [ch. iv

and from equations (109) and (110) we now find

dxdydz
1 1 ... dochdccc '• 777

Vp _ ^ J] dudvdw m^^
~Z~ 771 7"^'^^ "P^ /+°° ^ -'*

\\\ dxg^dxiydxc ... I du\ dv \ dw
J J J J — CO J— 00 J —cc

This vanishes through the last factor, for the obvious reason that when

the molecules are equally likely to have all velocities, the probability is

infinitely against a single molecule belonging to any specified class.

63. Let us now suppose that the velocities of the individual molecules are

given, and let us calculate the probability in this case that condition p is

satisfied. Let us suppose that the velocities of molecule A are known to lie

within the limits

i^a and w„ + Sua, v^ and v^ + Bva, w^ and w^ + Sw^ (H^),

and that we have similar knowledge for the other molecules. The value of

V, the whole space representing systems for which the molecules have the

given velocities, is given by equation (110) if the integration is from Ug_ to

Ua + Swg for 11^ instead of from — 00 to + 00 , and similarly for the other

velocities.

Thus we have as the new value of v,

v = SWftSva ... Ml ... dxadxbdxc (H^)-

As before, the systems for which condition p is satisfied by molecule A
are represented by those parts of the space v for which x^ lies between x and

X + dx, and similar conditions are satisfied by y^, z^, u^, v^, w^. We shall

suppose, as we legitimately may, that the Sm^, Sv^, Sw^ of the limits (112) are

infinitesimal in comparison with dudvdw. Then provided that the range for

aa given by (112) lies within the range u and u + du, and that similar

conditions are satisfied by v^; '^a> the contribution to Vp corresponding to

molecule A is given by the right-hand of (113) provided the integration with

respect to Xg^ extends only from a; to a; + dx, and similarly for y^, z^. Thus if

the velocities of molecule A lie within the specified ranges, there is a contri-

bution from molecule A to Vp of amount

dxdydzBug^Bva ... jjll ...dx^dxc ... dy^dyc (114).

If the velocities given by the limits (112) do not lie within this range

dudvdw the contribution is nil. The number of molecules of which the

velocities satisfy the condition of lying within this range—in other words, the

number of molecules capable of taking the r61e of molecule A in expression

(114)—may be taken to be

Nf{u, V, w) dudvdw (115).
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The product of expressions (114) and (115) gives Vp. From this and equation

(113) we get

\u\ ...dx^dxe-.-dy^dyc...

-^ = Nfiu, V, w) dudvdwdxdydz '
., • • .(116).

^

WWW •• dxadxbdxc . . . dyady^dyc

64. Let us define condition q as the condition that there shall be a

molecule having its coordinates within the limits x' and x' + dx', etc. The

volume Vpq for which conditions p and q are both satisfied will consist of

contributions from different pairs of molecules. In expression (116) we

suppose molecule A to satisfy condition p. If molecule B satisfies condition

q the corresponding contribution to Vpjv can be obtained from the right-hand

of (116) by limiting the integration in the numerator to the range from x to

x' + dx as regards x^, and to similar ranges as regards yt, 2b- The number

of molecules capable of taking the role of B is

Nf{u',v',w')du'dv'dw'.

Hence we obtain as the value of Vpqjv

^ = N^f(u, V, w)f(u', v', w') dudvdwdu'dv'dw'dxdydzdx' dy'dz'

W ••• dxc... dye...

.(117).

. dxadxidxc . . . dyadyidyc

The integration extends throughout all the values of the variables except

such as are excluded by the conditions of § 36. In applying these conditions

to the numerator, we must replace Xa,ya, Za ^Y ^^ y> ^ ^^^ ^6' y«" -^6 ^Y ^''
V'^

^''

We therefore find, as we ought, that Vpq vanishes when the points x, y, z and

X
, y , z' are at a shorter distance than a, or when either of them is at a

distance from the boundary less than \(t. We also see that Vpq\v is not equal

to the product of i/p/y and Vq\v, so that the fulfilment of conditions p and q

cannot be treated as independent events.

Infinitely Small Molecules.

65. In the special case in which the radii of the molecules are vanish-

ingly small, those parts of the generalised space which are excluded in § 36

may be neglected. In the integrals of equations (116) and (117) the integra-

tions with respect to the variables with different suffixes now become inde-

pendent. We may for instance write

]]]']]
••' ^'^ad^bdxc ... dy^dybdyc ... =

jjj
dxady^dz^ \\\dxidy,,dzi... = il^.
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The other integrals can be simplified in a similar manner, and we obtain

V N— = -f^f(y; V, w) dudvdwdxdydz (118),

~^ ~
i O )

•^^^' ^' '^^f^^' ^'' '^')dudvdwdu'dv'dv)'dxdydzdx'dy'dz' ...(1\^).

Writing v for NjD. we see that the right-hand of equation (118) becomes

identical with our former expression (2) (p. 17). In other words, in the case

in which the density is constant throughout the gas, the probability that

condition p shall be satisfied for a system selected at random, is equal to the

probability calculated in § 14.

From equations (118) and (119) we have the important result

'^ = '^-^
(120).

V V V

Thus the fulfilment of conditions p and q are now independent events.

In other words, we have proved that, relatively to our present basis of prob-

ability, the assumption of molecular chaos enunciated in § 15 is justifiable in

the case in which the radii of the molecides are vanishingly sinall.

66. To justify the way in which this assumption was used in Chapter II

we must go somewhat further. In expression (4) we found a value which we

supposed to be equal to the number of collisions of a certain class a. The

actual value of this expression was, however, equal to

(the number of possible collisions of class a)

X (the probability of each collision happening).

This quantity therefore expresses the probable number of collisions, the

number which actually occur averaged over a large number of cases, or the

"expectation" of collisions, but does not necessarily express the actual number

in any particular case. Looked at from another point of view, however, the

quantity expressed

= (the sum of a number of small elements of volume)

X (the density of molecules of class B) (121).

Now there was nothing in the analysis of Chapter III to compel us to take

the " cells " to be continuous in space. We may accordingly regard the first

factor in expression (121) as one of these cells. We now see in accordance

with the results of Chapter III that expression (121) not only gives the

" expectation " of molecules of class B in these elements of volume, but that

it is infinitely probable that it gives the actual number, to within an infini-

tesimal fraction of the whole. It follows that the number of collisions of a

given type found in Chapter III not only gives the most probable number of

collisions, but that it is infinitely probable that it gives the true number, to

within an infinitesimal fraction of itself.
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Molecules of finite size.

67. When the molecules are not vanishingly small, let us denote the

integral

...dccbdxe... dyifdyc
liL

taken over all values of the variables which are not excluded by § 36, by

7(6, c...). The value of the integral can only depend on Xa, 3/0. ^a. and

since we have supposed the molecule A to be at the point op, y, z, we may say

that 7(6, c ...) is a function of x, y, z only. Equations (116) and (117) now

become

— = Nf (u, V, w) dudvdwdxdydz j. , \ —7-^^ (122),
V J \ ' ^ ^ I (a,b, c, d ...)

-M — N'f{u, V, iu)f{u', v', lu') dudvdwdxdydzdu' dv'dw' dx'dy'dz' ^. '—^ \

'.-(123).

From equation (122) we see that the density of molecules of class A
at X, y, z may no longer be taken to be

vf{u, V, w) dudvdw

but must be taken to be

Vifiu, V, w) dudvdw,

where v,=^ N /^V"'\ (124).

N
a quantity which reduces to ^ , and therefore to v, when the molecules are

infinitely small. In general Vi is a function of x, y, z but it is not a function

of u, V, w. We may conveniently refer to v^ as the "effective molecular

density " at the point x, y, z. When we require to specify the point x, y, z

at which v^ is estimated, we shall replace vi by Vx,y,z.

68. The "expectation" of the number of molecules in the whole vessel

is equal to the total number of molecules actually present in the vessel,

so that

///
Vx,y,zdxdydz= vD. (125).

Thus V is the mean value of Vx,y,z averaged throughout the vessel. We shall

see later the importance of the distinction between Vx,y,z and v.

For the present the following point may be noticed. In regions so far

inside the containing vessel that the boundary may be regarded as far

removed compared with the molecular scale of size, the value of Vx,y,z must

be the same at every point, for there is nothing to produce changes in Vx,y,z

as between one point and another. In a vessel of normal or large size

(cf § 175 below) these conditions hold throughout the interior, except for a
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thin layer, close to the boundary, of which the total volume will be vanish-

ingly small 'in comparison with that of the whole vessel. It follows from

equation (125) that Vx,y,z will be indistinguishable from v throughout the

interior of the vessel, but may vary appreciably from v near to the boundary.

The evaluation of V3;,y,z for points near to the boundary is carried out in detail

in a later chapter (cf § 218).

69. From equations (122) and (123) we obtain

Vp Vq ^vpq I (b, c,d...)I(a,c,d...)

V V V I (c, d ...) I (a, b, c, d ...) ^
''

Hence, given that the molecule A is in position at cc, y, z, the probability

that a second molecule B has a position at x', y , z is not that which would

be given by the assumption of molecular chaos, but is equal to this value

multiplied by
I{c,d...)I(a, b, c, d... )

i{b,c,d...)I{a,c,d...) ^ '
^'

a function which is symmetrical as regards the x, y, z coordinates of A and

B, and which is independent of the velocities of the molecules A and B.

Analysis of the H-theorem.

70. The assumption of molecular chaos (corrected, if necessary, in

accordance with § 69) will therefore give correct results, provided it is

interpreted with reference to the basis of probability supplied by our

generalised space, and provided it is understood that it gives probable,

and not certain, results. If we wish to obtain strictly accurate results, the

quantities calculated from it must not be regarded as applying to a single

system, but must be supposed to be averaged over all the systems in the

generalised space which satisfy certain conditions. For instance, the value

of ^ given by equation (12) is merely the value of ^ averaged throughout

all those parts of the space for which the system has a given f So also we
dH
dt

must interpret the value of —rr given by equation (20) as an average value

JO
for -7— , taken over all systems in our space which have a given value for H.

71. We now come to what is, at first sight, a paradox. Let us suppose

that f is an even function of u, v, w different from the normal function
^Q-hm{u^+v^+w-)^ Then from Chapter II (§ 23) it follows that dHldt is

negative, dHjdt indicating, as we have just seen, the value of dH/dt averaged

over all the systems in our space which have this given /. Now these

systems may be divided up into pairs. Corresponding to any system there

will be a second system of which the positional coordinates will be the same

as those of the first system and of which the velocity coordinates will be the
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same in magnitude but opposite in sign. Since / is an even function of the

velocity coordinates, the vahie of / will be the same for each of these two

systems and both systems are equally to be included in the average of dH/dt.

But the motion of the first system is exactly the reverse of that of the second

system. It would therefore appear as though the values of dH/dt must be

equal and opposite for the two systems, so that the average of dH/dt for

these two must be zero. Since the whole of the systems corresponding to a

given f fall into pairs of this type, it might be inferred that the average

value of dH/dt must be zero.

72. The explanation of the apparent paradox is as follows. From § 55

it appears that dH/dt is the same thing as dK/dt, where K is given by

equation (95). The law of distribution of the A"s for velocity coordinates is

easily shewn to be of the same general form as that for the positional coor-

dinates given in § 47. In particular, it can be seen that, of the systems for

which H has a value greater than some value H^ other than the minimum
value for H, all except an infinitesimal fraction have a value for H which

only differs infinitesimal ly from H^. If, therefore, we select at random a

point at which the value of H is Hi, it is infinitely probable that H will

decrease as we recede from this point in either direction along the trajectory

through the point. In other words, it is infinitely probable that the value

H = Hi is a maximum value of H for the trajectory through the point.

73. It may, perhaps, still be thought paradoxical that dH/dt is not zero

at each of these maxima. The explanation is that the variation of // is not

governed by the laws of the differential calculus, since this variation is not,

strictly speaking, continuous. The value of H is constant between collisions

of the molecules, and changes abruptly at every collision. When the number

of molecules in the gas is infinite, the interval between successive collisions

will become infinitely small, but in general the variation in H will not be

continuous. For obviously the differential coefficients of H vanish between

collisions and become infinite at every collision, so that H, regarded as a

function of t as we follow any trajectory, will be a function of the well-known

type which possesses an infinite number of maxima and minima within a

finite range of the variable. We can, however, "smooth out" the curve

obtained for H as a. function of t and in this way obtain the function H
as a continuous function of the time. This is the H contemplated by the

analysis of Chapter II. But now we can also see that there is no reason

to suppose that dH/dt will vanish when H attains a maximum value, but

that on the contrary H will in general change sign abruptly at such a point.

It is therefore clear that, averaged over all systems which have a given /',

dH/dt will be negative except when /is the law of distribution for the normal

state, in which case it is zero. This result is now in agreement with that of

Chapter II.

J. G. 5



CHAPTER V

GENERAL STATISTICAL MECHANICS AND THERMODYNAMICS

74. Two methods of obtaining the Law of Distribution of molecular

velocities have now been given and also a comparison between them. These

two methods have been limited to the consideration of molecules which may
be treated as elastic spheres, exerting no forces on one another except when
in actual collision. There is a more general way of treating the question,

which permits of the molecules being dynamical systems of the most general

type, capable of any kind of internal motion and exerting upon one another

any forces we please. This method will be explained in the present

chapter.

With a view to obtaining results which will be required later in the

development of the subject, we shall not limit the discussion of the present

chapter to the problem referred to above ; we shall consider the " Statistical

Mechanics " of a perfectly general dynamical system, not in the least limited

to consisting of a gas. The special applications of the present chapter will be

to a gas, while in later chapters we shall have occasion to apply the results to

more general systems.

Degrees of Freedom.

75. The total number of independent quantities which need to be known

before the configuration and position of any dynamical or other system can

be fully known, is called the number of degrees of freedom of the system. It

will be seen that this number depends on the motions, or capabilities of

motion, of the parts of the system, and not in any way on the forces which

produce the motion ; it therefore corresponds to geometrical or kinematical

properties of the system, and has nothing to do with the dynamics of the

system.

For instance the position of a point free to move in space can be

determined when three quantities are known, say x, y, z, the coordinates

of the point, so that a point free to move in space has three degrees of

freedom. The number of degrees of freedom of a rigid body will be six, for
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the position of the body can be fixed when six quantities are known, say

X, y, z the coordinates of the centre of gravity of the body, and three angles

0,
<f>,

\jr to determine the orientation of the body. Similarly the number of

degrees of freedom of a pair of compasses will be found to be seven, of a

nutcracker eight, of two rigid arms connected by a " universal joint " nine,

and so on.

76. Numbers of degrees of freedom are additive in the sense that the

number of degrees of freedom of a complex system made up of a number of

simpler systems is equal to the sum of the numbers of degrees of freedom of

the constituent systems. This becomes obvious on noticing that a knowledge

of the configuration of the complex system is exactly equivalent to a knowledge

of the configurations of all the constituent systems.

For example, if atoms are regarded as points, each atom will have three

degrees of freedom, corresponding say to x, y, z its coordinates. A diatomic

molecule must therefore necessarily have six degrees of fireedom. These can

be counted up in a variety of different ways, but the total must always come

to six. For instance we might take the six degrees of freedom to consist of

the three degrees of freedom of the centre of gravity to move in space, the

two degrees of freedom of the line joining the two atoms to change its

direction in space, and the one degree of freedom arising from the possibility

of the two atoms changing their distance apart.

In general, if atoms are regarded as points, a molecule composed of

n atoms will have 3n degrees of freedom, while if atoms are regarded as

rigid bodies capable of rotational as well as translational motion, a molecule

composed of n atoms will have 6w degrees of freedom. If electrons are

regarded as points, a cluster of n electrons will have 3n degrees of freedom.

If molecules are treated as points, a gas consisting of N molecules will be a

dynamical system having 3iV degrees of freedom, while if each molecule has

n degrees of freedom, the gas will have nN degrees of fireedom.

77. In surgery, a joint which has become so stiff as to be incapable of

motion is said to be ankylosed. Thus in ankylosis the human body loses some

of its "degrees of freedom." The term has been introduced, with great

convenience, into dynamical theory by Poincar^. For instance we have seen

that a pair of compasses has seven degrees of freedom ; if the joint becomes

rusted so that the arms cannot turn, the number of degrees of freedom is

reduced to six, as in any other rigid body ; one degree of freedom has become

ankylosed. So in the diatomic-molecule, regarded as made up of two point

atoms, the number of degrees of freedom is six. But if the two atoms are,

under any conditions, so closely bound together that their distance apart

cannot be changed, the number of degrees of freedom is reduced to five

;

the sixth degree of freedom is ankylosed.

5—2
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The Motion of a General Dynamical System.

78. In theory the motion of any dynamical system may be traced out,

when the initial configuration of the system and the initial velocities of the

different parts of the system are given. Statistically, the motion can be

examined by a method similar to that already adopted in Chapter III.

Consider any system having n degrees of freedom. Let q^, q.^, ... qn be

coordinates specifying the configuration of the system. Then the rates of

increase qi, q^, ... qn of these quantities will specify the velocities of the

different parts of the system, and it will be possible to trace out the motion

of the system if we are given the initial values of the 2n quantities

qi, qu, '• qn, qi, q2, ••• qn (128).

The total energy of the system will be a function of the above 2n quantities.

It is convenient to introduce the momenta ^i, p^, ..• Pn, defined by

^, = 1?, etc (129),
oqs

these momenta being, of course, functions of the 2n coordinates and velocities

(128). In all ordinary cases under consideration E will be a function of the

second degree in the velocities q^, q^, ... qn, so that the momenta will be

linear functions of these velocities.

The 2n quantities (128) may now be replaced by the 2n quantities

qi,q2, ..•qn,Pi,P2, -'-Pn (130).

When the values of these quantities are known at any instant, the configuration

and velocities of the system are known at that instant and may therefore be

traced throughout all time.

79. In general we shall be concerned only with the study of self-contained

conservative systems in which there is no dissipation of energy. For the

moment, however, we shall not limit ourselves to conservative systems ; we

shall suppose that the motion of the system is subject to dissipation of energy

at a rate 2F, where ^ is a quadratic function of the velocities.

If the system obeys in its motion the ordinary dynamical laws, the

equations of motion of the system are the well-known equations

"i^^-f-'^ (131),
at dqs dqs ^ '

t=af (132),

in which E is to be expressed as a function of the q^ and js's, while the

dissipation-function F is expressed as a function of the q^ and ^'s. When
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there is no dissipation of energy, F=Oy and the equations reduce to the

well-known equations of Hamilton

t=-a| <^«^)-

t=i (1^*)-

Representation in a Generalised Space.

80. In Chapter III (§§ 35, 36), the motion of a system consisting of a

number of elastic spheres was represented in a generalised space of the

appropriate number of dimensions. It is convenient to imagine the motion

of the present more general system to be represented in the same way.

We accordingly imagine a 2w-dimensional space constructed, for which

the 2?i-variables

qi, qz, " qn,pi,p2,-"Pn (135)

are orthogonal coordinates. Then any one point in this space will represent

one definite set of values of q^, q^, ••Pn, and so will represent one definite

" state " of the system, as determined by one set of coordinates of position and

velocity. As the dynamical system changes its state, the representative point

will describe a continuous curve in the 2n-dimensional space.

The motion of any representative point in such a curve will be determined

by equations (131) and (132). These equations are seen to express the com-

ponents of velocity (-t^j -^ , ••• -^) of the representative point, in terms

of the coordinates of the point. Clearly, then, these components of velocity

are uniquely determined for any given point, so that there can be only one

curve through each point in the space.

Also the components of velocity, as given by equations (131) and (132),

are functions of the coordinates only, so that the curves determined by these

equations may be thought of as permanently fixed in the generalised space.

We can imagine all possible curves of this kind mapped out in the generalised

space, and this imaginary 2n-dimensional chart will enable us to follow out

the motion of the dynamical system, starting from any initial state that we
please.

All the conceptions of the present section are illustrated in the detailed

case already worked out in §§ 35—38.

81. What we wish to study is not the motion of the system starting from

any one set of initial conditions ; we wish rather to find statistical properties

of the system, which shall be true for all motions, no matter what the

particular state from which the system starts. It is therefore convenient

to imagine the whole of the 2n-dimensional space filled with moving points.
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each describing its own curve, as determined by equations (131) and (132).

These points will be supposed to be so thickly scattered in the space that

they may be regarded as forming a continuous dust or fluid, exactly as before

in the special case of § 39.

The number of these representative points per unit volume of the

generalised space will be denoted by t, and this will measure the density

of the imaginary dust or fluid.

As the representative points move on their paths, the points forming any

small continuous group might conceivably close in upon one another, in

which case t would increase, or they might separate out from one another,

in which case r would decrease. The changes which are to be expected in r

are examined in the analysis which follows.

82. Consider any small rectangular element of volume in the generalised

space of content dv equal to dpi, dp^, ... dqn, extending from pi to pi + dpi,

P2 to pa + dpz, etc. The number of representative points inside this element

of space at any instant is rdv.

Points are streaming in or out of this element across each of its faces.

Let us consider the flow across the pair of opposite faces, perpendicular to the

axis of pi, for'which pi has the values pi and jOj + dpi. Let the area of each

of these faces be dS, so that dp^dS = dv.

The points which cross the face p^ have a component of velocity -^ given

by equation (131) normal to the face, so that the number of points which flow

across the face into the element dv in time dt will be

T^dSdt (136),

this quantity being of course negative if the flow is outwards. Similarly the

number which flow in across the opposite face is

-T^dSdt (137).

The two quantities (136) and (137) are not equal and opposite, for the

former is evaluated at the face p^ and the latter at the face pi + dpi. Their

algebraic sum is

or again —— {Tpi)dvdt (138),

and this represents the net gain to the number of points rdv in the element dv,

which is produced by the flow across the pair of faces perpendicular to the

axis of pi.
•
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There are similar gains to be evaluated by considering the flow over

each other pair of faces, and the total gain, being equal to the sum of all these

contributions, is

-fll/^^'^+am** ^'''>-

This must be equal to the gain to rdv in time dt, and therefore to

— (rdv) dt, so that
ot

Fl+!!|.(^^)^am = « <"«)•

Here -^ represents the rate of increase of t inside a fixed element of

Dr
volume. Let -^ be taken to represent the rate of mcrease in r as we

Dt
follow the group of points in its motion. Then, since -rr- represents the

rate of increase of a function of t, pi, p^, ••• <ln,

Dt _ 9t 9t dp-i 9t dp2. Bt dgn

Dt dt dpi dt dp2 dt '" dqn dt

dT ^{dr . dr .] ,, .,,

It follows that equation (140) can be put in the form

§^-!ll:^i=« •••; <'*''

this being merely the hydrodynamical equation of continuity in the

2?i-dimensional space.

The values of ^,, qs are given by equations (131) and (132), so that

9^ _ _ d'E^ _ 9lF_ . djs __ d'E
.

dps~ dpsdqs dpsdqg' dqg dpgdq/

and therefore ^A + ^A=.^Jll^ (143).
dps dqs dpsdqs

Thus equation (142) reduces to

Dt_ ^J^ .....

Dt-'^'^dpgdqs ^ ^'

and this is the required equation, giving the change in the density t as the

cloud of representative points moves on its way.

83. It is readily shewn that 2 —— must always be positive, except in

the special case in which F=0. For, since F is supposed expressed as a

function of the q's and qs, we have

I
d^F ^^v^^l^ 92^9^_*|'*'-|'' d^ d^E_ ^^..

1 Bpsdqs 8=1 r-i dqrdqgdpg~ S-.1 r=i dqr^sdprdps
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Equation (144) shews that the value of S ^

—

— at any point in the

generalised space must be independent of the special choice of axes at that

point. By a linear transformation we can change the jp's so that E becomes

a sum of squares only, say E = \'^agp^, while F has a general quadratic

value, say F= \1,^gq^ + 'l,%'yrtirif The value given by equation (145)

now becomes

^^ = la,^s (146).
1 opsoqs

Since E and F must necessarily be positive for all values of the variables,

all the a's and yS's must necessarily be positive or zero, and therefore each

member of equation (146) is positive or zero.

Since all the a's are necessarily positive and not zero, the only way in

which Sog^s can be equal to zero is by all the ^'s vanishing, and this in turn,

since F cannot be negative for any values of the variables, demands that all

the remaining coefficients in F should vanish, so that F=0. This proves the

required result.

Non-conservative System.

84. For any system for which F is not equal to zero, equation (144)

shews that r must continually increase; in other words the points which

form any cluster in the generalised space will, as the motion progresses,

continually crowd closer and closer together.

The dissipation-function F of equation (131) is defined to be half the

rate at which energy is lost by dissipation, so that

f=-2^ (!«)•

a result which can also of course be deduced from equations (131) and

(132) directly.

Since F is supposed positive, this equation expresses that as the repre-

sentative points move in the 2?i-dimensional space, they continually pass

from higher to lower values of E. Thus the motion of the points is one

in which r always increases while E always decreases ; it consists of

a movement of concentration upon the points in the generalised space

at which E has certain minimum values, these points being defined by the

condition F =0. No matter how the representative points are started in the

generalised space, they will after a sufficient time all be concentrated at

these special points.

This result contains the solution of the problem of finding the ulti-

mate final state of any dynamical system whatever, except only in the one
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special case in which there is perfect conservation of energy. In this case

the condition F=0, which in general determines the final resting places of

the representative points, is satisfied throughout the whole of the generalised

space, and the result just obtained becomes useless.

Conservative System.

Liouville's Theorem.

85. For a dynamical system which is perfectly free from dissipation of

energy, F=0, and equation (144) reduces to

^ = (!«)

This result, first enunciated by Liouville, shews that when the motion

of a dynamical system is governed by the equations of Hamilton ((133) and

(134)), the density of any cluster of representative points remains unaltered

as the motion progresses. Thus there is no tendency for the representative

points to crowd into any special region or regions in the generalised space.

A particular instance of this general theorem has been worked out in

detail in § 40.

86. This result shews that the problem of searching for the final state

of a system must now be treated in a different manner firom that followed,

for the case of a non-conservative system, in § 84. •

Imagine that a system is found invariably to possess a certain property

{e.g. maximum entropy) after being left to itself for a sufiicient time.

This might d priori be expected to be for one of two reasons : either that

the points in the representative space tend to crowd into those regions

of the space for which the property is true, or else that the property is

true for the whole of the space. For conservative systems, Liouville's

theorem excludes the first possibility; the second reason must therefore

be the true one. We are therefore led to search for properties such as are

true for the whole of the generalised space.

This set of ideas must however be examined somewhat more in detail.

Normal Properties and the Normal State.

87. Let us fix our attention on a certain property P, which is such

that the system under consideration possesses this property in some states

but not in all.

Since the system now under consideration is supposed to be a con-

servative system, the value of E will remain the same throughout the

motion : the representative points will move on the surfaces E = constant

in the generalised space. Let us confine our attention to that part of the
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generalised space which represents systems having energy close to some given

value of E, say systems of energy between E and E + dE. And let us

suppose that of this region, a volume TTj represents states in which the

system possesses the property P, while a volume W^ represents states in which

the system does not possess the property P.

Choosing coordinates of position and momenta for the system at random

is the same thing as selecting a point at random from the whole of the

generalised space. Choosing coordinates at random subject only to the con-

dition that the energy shall lie between E and E + dE is the same thing

as selecting a point at random from the region of the space for which the

energy lies between ^ and E+dE. It follows that if a system of energy

between E and E -\- dE has its coordinates assigned to it at random, the

probability of its possessing the property P will be

T^ ("9)-

A different problem is that of examining what is the probability that a

system initially selected at random subject only to the condition of its energy

being between E and E + dE shall have the property P after following out its

natural motion for a time t. Let us suppose the thin shell in the generalised

space which lies between the surfaces E and E + dE to be filled with a cloud

of representative points, so close together that they may be regarded as

forming a continuous fluid, and let these points be distributed initially so

that the density of this fluid is uniform. Then each of these points has an

equal chance of representing the system selected initially at random. Let

this cloud of points move for any time t, in accordance with the equations

of motion of the system. Then from the conservation of energy, it follows

that the points will at the end of the time t still lie between the surfaces

DtE and E + dE, and from the equation -j- = 0, it follows that the fluid will

still be of uniform density. The number of points which, after time t,

represent systems possessing the property P will accordingly be a fraction

W
-^—^^fj^ of the whole, and therefore the same fraction measures the prob-

ability that the system shall possess the property P after time t.

It follows that if a conservative system is found always to possess the

property P after a sufficient time has elapsed, this can only be because

the ratio Wi : Tfj is infinite. The following definitions will be convenient

:

Definitions. A property P which is such that the ratio WJ Wo is infinite

will be called a normal property of the system.

A system which possesses all the normal properties of which it is capable

will be said to be in the normal state.
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So long as a system is thought of as having only a finite number 2?i of

coordinates, it is natural to expect the ratio W^jW^ corresponding to any

property P to have a finite value, but as soon as In is made infinite, it is

not surprising that TFj/PTa, which will in general be a function of n, should

become infinite or zero.

88. We are now in a position to answer the question as to what is the

final state to be expected in a conservative system.

The system will be capable of possessing certain properties Pj, P^, P^, ....

These properties will, in general, change with the time, some of them very

slowly, some more quickly, some with extreme rapidity. We may suppose

that the property Pj may in general be expected to change in a time

comparable with t^, the property Pj in a time comparable with tz, and so on.

After a time t which is very large compared with all of the quantities

ti, t2> ..., the system will have had ample time to change all its properties.

The influence of the initial conditions will in a sense have disappeared; the

representative point in the generalised space will have had time to move

away from the special regions in which it may have started, where any

normal property does not hold. The system may therefore be expected to

possess all the normal properties, and therefore to be in the normal state.

89. A complication can arise from the possibility of the system having

properties which are not capable of change at all, or for which the time of

change is infinite.

For instance, if a system is perfectly self-contained and subject to no

external influence, its angular momentum must of necessity remain always

equal to its initial value. Thus the property of the system having an angular

momentum lying between certain limits is one which the system cannot

acquire with the lapse of time ; either the system will possess this property

at starting, or will never possess it. An examination of the generalised

space will shew that one value of the angular momentum, namely zero, is

common to all of the generalised space except certain infinitesimal regions

—

for this property of having zero angular momentum, the ratio W^jW^ in the

notation introduced in § 87 is infinite. But unless the system happens to

have started with zero angular momentum, no time will be sufficient for this

value of the angular momentum to be acquired. Thus the having of zero

angular momentum, although a normal property of the system, is not to be

regarded as an essential of the normal state; it is not required by the

definition of the normal state, for it is not a property of which the system

is capable.

On the other, hand if the system, is capable of varying its angular

momentum, then the property of having the normal value for its angular

momentum must be regarded as one of the properties of the normal state.
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For instance, let the system be a gas enclosed in a jfixed closed vessel.

Except in very special cases, such as that referred to in § 42, the gas can

change its angular momentum, and it is easily seen that the possessing of

zero angular momentum is one of the normal properties of the system.

Hence in the final state of the system we must expect the angular

momentum of the gas to be zero.

90. One property which can never be changed in a conservative system

is that of having a certain value for the energy. For this reason, in defining

the normal state, we considered only systems having a specified amount of

energy, namely energy between E and E+ dE. In the same way if the

system has other quantities or properties which are invariable, account must

be taken of this invariability in specifying the normal state. The various

complications which may arise in this way are somewhat difficult to discuss

in general terms, but are not difficult to treat in particular cases, as the

various examples which occur in the present book will shew.

The Normal Partition of Energy.

91. The normal properties which may be considered first are those asso-

ciated with the partition of energy.

If the 2w coordinates of position and velocity (135) are now denoted by

01, 02, ••• 02n, the energy E will be of the general form

E=f(e,,d„ ...d,n) (150).

Let us however suppose that the energy E can be divided into separate

and distinct parts E^, E^, ..., such that E^ depends only on one group of

coordinates, say ^i, d^,...9s\ E^ depends only on another group, distinct

from the former, 6g^^, 6g+2, ••, ^s+t, and so on. Also let it be supposed that

each of these groups contains a number (s, t, ...) of coordinates which is so

great that it may be treated as infinite. Then

E=E, + E,+ ...=f,{e„0„...es)+f,(0g+„eg^„...ds+t) + (isi).

Let us define the property P as being possessed by the system when

there is a certain partition of energy, namely one in which

El lies within a small range E^ to Ei + dEi,

E^ „ „ „ E^ to E^-{-dE^, etc. \

^

Then the volume TTj of the generalised space, within which the property P
holds, is given by

Wi = fff...fdeide,...dd,n (153),

where the integration is taken throughout the region defined by the

conditions

Ei<fiiei,d„...dg)<Ei + dEi (154),

E,<f,{0g+i,ds+2,...Os+t)<E, + dE, (155),

and so on.
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The integral Wy may be written in the form of the product

w,=(jj...jd0,d0,...d0,)(jj...jdds+,de,+,...dds^t)(-..) ...(156),

in which the first integral has to be taken within the limits specified by

(154), the second integral within the limits (155), and so on. Clearly the

first integral in the product can depend only on E^, and dEi, and so must

be of the form F^ (E^) dEj . Similarly, the second must be of the form

Fi(Ez) dE^, and so on. Thus we must have

W, = F^{E,)F,(E,)...dE,dE, (157).

It would now be possible to attempt to evaluate the ratio WJ W^ (cf § 87),

but it will be easiest to attack first the simpler problem of finding for what

values of Ei,E2, ... the ratio W-^/W^ has its maximum value. In other words,

we shall search for the most probable partition of energy without at first

attempting to prove that it is a normal partition.

92. Since W^ + W2 represents a constant space for all partitions of

energy, namely the total space for which E lies within fixed limits E and

E + dE, it follows that WJ W2 will be a maximum when W^ is a maximum. -^""^"^

If El, E2, ... refer to that particular partition of energy which makes Wj a

maximum, then 8 log W^ will vanish when E^, E^, ... are subjected to slight

variations BEi, BE^, ... provided these variations are subject to the condition

8Ei + SE,+ ...=0 (158),

expressing that the total energy remains unaltered. Thus we must have

'"y> 8^.^'^Jg||(^'ag.+ ...=0 (159),

for all values of BEi, BE2, ... which satisfy relation (158).

Replacing 8E1 by — 8E2 — 8E3— ..., equation (159) becomes

dlogF,(E,) d\ogF,{E,)
\

(d\ogF,(E,) d\ogF,(E,) )

dE^ m ]
' { ~~dEs dE, 1

'

+ ...=0...(160),

and, since this must now be true for all values of 8E2, 8Es, ..., we must have

d\ogF,(E,) d\ogF,(E\) _
dEi ~ dE, ~ ^^^^^•

The solution of these equations, together with

E=Ei + E2 + (162),

will give the most probable partition of energy for a system of assigned total

energy E.

For the moment we shall not attempt to prove that this partition of

energy represents a normal state : we shall assume this provisionally, and

prove it later for the special cases in which it is of importance.
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Thermodynamics, Entropy and Temperature.

93. Let us put
P = \og[_F,{E,).F,{E,)....-\ (163).

Suppose that a quantity dQ of energy is added to the system from outside.

Since the system is supposed conservative, the effect of this must be to increase

the total energy of the system from E to E + dE, where dE = dQ, and in doing

so, it may be supposed to increase E^, E^, ... to E^ + dE^, E^ + dE.^, ..., where

dE\ + dE^+... = dQ (164).

We shall suppose that before and after, and also during, the addition of

heat, the partition of energy is always the most probable, so that equations

(161) are true at every instant.

The change produced in P is, from equation (163), given by

dP = '^ '°g,^ '^> dE, + ^
'°g,i-

<^^'>
dE, + (165).

From equation (161), the coefficients of dE^, dE,^, ... in this equation have

all the same value. Call this k, then

dP = k{dE, + dE,4-...)^kdQ (166).

This shews that kdQ is a perfect differential, or in other words that k is an

integrating multiplier of the differential dQ.

94. From general thermodynamical theory, another integrating multiplier

of the diflferential dQ is known, namely ™, where T is the temperature

measured on the thermodjmamical scale. If is the entropy we know that

# =^ (167);

this is in fact the simplest expression of the Second Law of Thermodynamics.

The circumstance that both k and 1/T are found to be integrating

multipliers of the differential dQ does not of course justify us in identifying

k with 1/T. It does enable us, however, to establish a simple relation between

them.

95. The energy E of the system will in general depend on a number

of variables |, tj, ^, ... specifying the physical state of the system or of its

different parts. Thus the amount of heat dQ which must be added to

produce any specified change must be of the form

dQ = Ld^ + Mdv + ]^d^+ (168),

(cf equation (486) below for a specific instance) and we shall have

dP = kLd^ + kMdn + kNd^+ (160).

Hence we must have

kL = ~, kM= ^^, etc (170).
0^ dr)
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Similarly, from relation (167) we obtain

M. f=|.- ("!)

It follows that

ap ap ap

M = £l=^=: (172)
8<^ a<^ 90

9f ^ 9?

the value of each fraction being hT. From this it follows that there must be

a functional relation between P and 0, say P =f((f>). On substituting this

value of P into equation (172), this equation becomes

k = ^fi<f>) (173),

where /'
{(f>)

stands for ^]^ , expressing the relation between the two in-

tegrating factors k and 1/T.

96. The quantity k is, however, the value of each of the fractions in

equation (161), ^^^ ' ®*^- Thus equation (173) gives the value of jE*!

in terms of ™/'
{(f)),

and so on for £"2, iS's, . . .. The value of Ei would obviously

be changed by a change in temperature, but it could not be altered by a

change in which the temperature T remained unaltered while the entropy

was changed by an alteration in some parts of the system not involving that

of energy E^. Thus E^ cannot be changed by changes in
<f),

and therefore

k as given by equation (173) cannot be changed by changes in
(f>.

It follows

that /'
{(f>)

must be a constant.

Let this constant be denoted by -^ , then k = ^7^

.

97. Equations (161) now become

.
d\ogF,(E\) _ d\ogF,(E,)_ __1_

dE, dE,
"••• RT ^^'*''

while the relation P =f((fi) becomes

RP= P + a constant (175).

Thus the entropy is given by

<}> = RP + a constant (176),

or again, on comparing equations (163) and (157),

^ = iJ log TFi + a constant (1*^7).
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98. This last result throws a flood of light on the meaning of the analysis

of the last few sections. It shews that the partition of energy which is most

likely

—

i.e. for which W-i is a maximum— is exactly that which makes the

entropy a maximum. If we like to assume, as a general physical principle,

that every system tends to a final state in which the entropy is a maximum,
then this state must be that for which W^ is a maximum, and must therefore

be given by equations (174). If this assumption is made, it follows at once

that the configuration for which W^ is a maximum is also one for which

TFi/Tfa is infinite; and therefore is the normal state as defined in ^ 87. But

this assumption need hardly be made, for, as we shall see (§ 103), a direct

proof can be given in all cases which are of physical importance.

Equipartition of Energy.

99. Equations (174) give Ej, E^, ... completely in terms of the tempera-

ture, but they can only be solved in the special cases in which the functions

Fi(Ej), etc. can be evaluated, and of these the only case which is of any

physical importance is that in which E^ is a homogeneous quadratic function

of the coordinates involved. This covers the case of E^ being kinetic

energy, or the potential energy of small displacements from a position of

equilibrium, or the energy of any type of isochronous vibration.

100. Let the coordinates which enter in E^ be supposed, as in § 91, to

be s in number, and let E^ be given by

E^=f, {d„ d„... e,)=cn e,'+c^ di + ... + 2c,,e,e, + (i78).

Then F^ {E^) dE^ is by definition the value of the integral

jj...jde,dd,...de, (179),

taken over all values of 6^, d^, ••• Og for which /i (0^, 62, ... 6s) lies between E^

and Ei + dE^.

By a linear transformation of the old coordinates, new coordinates

01, 02) • •
<t>s

can be obtained such that the value of E^ in these coordinates is

^i = a(0i^ + 0,/ + ... + 0/) .....(ISO),

7) (R ff f) \

and if /j, is the modulus of this transformation, namely .-/,
^'

J'
'"

^ , the
d(9i, <p2, ... 9s)

value of the integral (179) will be

fiJJ...Jdcl>,dc}>2...dcf>s (181).

The value of this integral, taken for all values of the variables for which

a {(^i + 02'* + . . . + 0/) is less than E^, is equal to ^ times the volume of a sphere

of radius a /(^) in a space of s-dimensions. It is therefore

-r(PTT)(f')
<'«^>-
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By differentiation with respect to E^, the value of the integral, taken for all

values of <^i, <^2, ••• <^« for which a{<^^^ + <^^^ + ...^ <^/) lies between E^ and

E^ + dEi, is

f.^^a-^^E,i'-UE, (183),

and this is precisely the quantity which has been called Fi{E^)dEi. Thus

we have as the required value of F^ (Ey),

F,(E,) = f.^^a-^'Ej^'-'' (184).

The most probable partition of energy is given by equations (174), so that

in this most probable partition, E^ is given by

dlogFAE^_ I , .

dE, RT ^^*^'''

leading at once, on using the value of i^i(^i) just found, to

E,=^{^s-l)RT.

Since we have already supposed s to be a very great number, the difference

between ^s — 1 and |s may be neglected. Also for all the parts of the energy,

say E2, E3, ..., for which the energy function is quadratic, the most probable

values of the energy may be evaluated in the same way, and so we find that

the most probable partition of energy is given, as regards 'those parts of the

energy for which the energy-function is quadratic, by the equations

E, = ^sRr, E^^i^tRT, etc (186),

where s, t, ... are the number of coordinates concerned in the quadratic

functions ii^j, jE'a, ....

101. It is now possible to prove that, as far at least as these parts of the

energy are concerned, the partition of energy expressed by equations (186) is

not only the most likely partition, but also expresses a " normal " partition in

the sense of § 87 ; that is to say, this partition is infinitely more probable than

any other.

102. Let El, E2, ... specify the most probable partition of energy as given

by equations (186), and let E^ + Ci, E2 + e^, ... specify any other partition of

energy corresponding to the same total energy. Then we must have

€1 + 62+... =0 (187).

The general value of W^ is seen from equations (157) and (163) to be

Wi = e^dEidE, (188),

while the whole value of Wi + W^ will be

W,^W^=^{{...e^d€,d€, (189).

J. G. 6
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For the partition of energy Ei + e^, E2 + e^, ...

= Slog(
e, ^4'

where Pq is a sum of constant terms not involving ej, €2, ..., and so is the value

of P for the partition of energy E^, E^, .... Expanding the logarithm, we

obtain

P - P -^ -^ ll - A
^^

4. 1 (
^1

and in virtue of relation (187), the first term in this sum vanishes, leaving

P - Po = -tj-^,^ t^ -^j^,- .....(190).

It has already been seen that the only stationary value of P is given by

Ci = 62 = ••• = 0. This makes P = P^, and an inspection of the right-hand of

equation (190) shews that this value is a true maximum. It follows that the

right-hand of equation (190) is negative for all values of the e's.

As we recede from the value ej = eg = . . . = 0, it is clear that P — P^ becomes

finite as soon as ei becomes comparable with \ls . RT, e^ with \Jt . RT, and so

on. For such values of ei,€2, ... the first term of (190) is infinitely greater

than any of the succeeding terms, and the value of P — Pq reduces to

^-^«=-^W' ('»»)•

For values of e^, €„, ... greater than these P —Pq becomes equal to — 00 , so

that ef vanishes in comparison with e " ".

It follows that the whole value of the integral (189) comes from a small

range of values surrounding the values €1 = 6^= ... = ; i.e. the values of

E^, E2, ... given by equations (186). Thus the integral (189) reduces to the

right-hand member of equation (188), the small range dE^ being comparable

with ^Js . RT, the small range dE2 being comparable with /^t . RT, and so on.

These small ranges are of course small in comparison with the whole values

/r F'

of El, E2, ... ; thus dEi is comparable with -^ , dE^ with ~, and so on.

With such values for the small ranges dEi, dE^, ..., the value of TTj -f W^
given by equation (189) becomes identical with the value of W^ given by

equation (188). Thus we have W^jW^ infinite, shewing that the partition of

energy now under consideration is a normal property of the system.

We have accordingly shewn that those parts of a system, say E^, E^, ...,in

which the energy is of quadratic type, will necessarily tend to the partition

of energy specified by equations (186). These equations express the Theorem

of Equipartition of Energy

:
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The energy to be expected for any part of the total energy which can be

expressed as a sum of squares is at the rate of ^RT for every squared term in

this part of the energy.

103. The proof that the remaining parts of the system, if any, in which

the energy is not of this type, will necessarily tend to the partition of energy

given by equations (174) is more difficult. In place of equation (191),

we have
dHogF^iE,)

P-Po=Sie,^
dE\

and the sign of the terms on the right must necessarily be a matter of

uncertainty so long as the form of the energy-function remains unspecified.

It is, however, clear that the arrangement of the loci Ei = cons., E2 = cons., etc.,

in the generalised space must, in every case, be of the same general type as

that in the simple case just considered, from which we may infer that P — Pq

must, in the more general case also, be of negative sign. It again follows

that W1/W2 must be infinite, so that the most probable partition of energy,

as expressed by equations (174), is now seen to be a normal property of the

system.

We accordingly see that every system must pass to a final state in which

TTi, and therefore also the Entropy, is a maximum. In this way we obtain

an analytical proof of the second law of thermodynamics, which may now
be regarded as being on a mathematical, instead of on a purely empirical

basis.

Law of Distribution of Coordinates.

104. Not only will there be a normal partition of energy, but there will

also be a normal way for the separate coordinates to be arranged so as to give

this particular energy. This has already been found in Chapter III for the

simple case of a gas composed of molecules which behave like hard elastic

spheres, A similar method may be applied to the more general problem.

Let us suppose that part of the dynamical system under consideration

consists ofN similar units, which we may think of as molecules for definiteness,

each unit possessing p degrees of freedom, and therefore having its state

specified by 2p quantities
<f)i, (fy^,

. . . <j>^, these being coordinates of position

and their corresponding momenta, as in § 78.

Imagine a generalised space of 2p dimensions constructed, having

^1, ^2, ••• <l>ip

as orthogonal coordinates. Then the state of any molecule of the system

can be represented by a single point in this space, namely the point whose

coordinates are equal to the coordinates <f>i, </>2, ... ^.^p specifying the state

6—2
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{i.e. velocity and positional coordinates) of the molecule. The states of all

the molecules can be represented by a collection of points in this space, one

point for each molecule. The problem before us is that of finding the law

according to which these points are distributed in the space.

Let T denote the density of points in this space—the quantity which we
are trying to find—so that

Td<f)id(f)2 . . . d(l>2p (192)

will be the number of points (or molecules) such that 0i lies between 4>i and

^1 + dcpi, <f>2
between

<f>2
and </>2 + d<f)2, and so on.

Thus T is a function of ^i, <^2) • • • ^ap-

105. Following the procedure adopted in §§ 43, 50, let the whole space be

divided up into n small rectangular elements of volume, each of equal size &>,

and let these be identified by numbers 1, 2, 3, .... Let us fix our attention

on a special distribution of points, which is such that the number of points

in elements 1, 2, 3, ... are respectively a^, a^, a^, .... Let any distribution of

points giving these particular numbers a^, a^, as, ... be spoken of as a

distribution of class A. Similarly any distribution of points giving another

set of numbers b^, h^, h^, ... may be spoken of as a distribution of class B,

and so on.

Each point in the original generalised space of § 80 will correspond to

a complete distribution of points in the space now under consideration.

The distribution corresponding to some of these original points will be a

distribution of points of class A, corresponding to others it will be a distri-

bution of class B, and so on. We proceed to evaluate the volume, say W^,

of the original generalised space which is such that the points in it represent

systems for which the distribution of coordinates is of class A.

This volume is readily seen to be given by

N\

In this expression the first factor represents, as already in § 43, the

number of ways in which it is possible to distribute the N points repre-

senting the N different molecules, between the n different elements, subject

only to the condition of the final an-angement being of type A. The

remaining factor, say \, given by

\=^<^^lll...dx.dx.dx^ (194)

represents the volume of the generalised space which corresponds to each

one of these arrangements, %i, %2. %3) ••• being coordinates of parts of the

system other than the N molecules under consideration. If we write

iV'
e^ =

, ,

•

(195),

^^ = ;n77^T- '"''/// -^XAA3 (193).
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and use a similar notation for a system of class B, etc., then the volumes

W^, Tfj,, ... are given by

W^ = \d^, Tr^ = X^js, etc (196).

Using Stirling's Theorem, as in § 44, we find

log^^ = (i\^ + ^)logiV^-i(n-l)log27r-T(a, + i)loga,...(197),
«=i

and if, as in equation (72), we put

Z« = -^^S (a« + i)log^* (198),

this gives as the value of 6^ (cf equation (73))

(9^ = 7i^+i«(27riV)-i("--l^e-'^^» (199).

Since W^ = \0^ , etc., it is clear that TF^ is proportional to e - ^^a

The most probable partition of energy is obviously obtained by making

W^ a maximum, and therefore K a minimum, for different values of

di, Oi, ....

As in § 45, we find for the variation of K

'""-Flhw + ' + U'"-
('"•'>•

The variations Sttj, Ba2, ... are not independent. They are necessarily

connected by two relations, and in some cases by more. Of the two relations

which are certain, the first expresses that the total number of molecules is

equal to the prescribed number iV; it is therefore expressed by the equation

Taa, = (201),

which is obtained on variation of the equation

'Xas = N ; (202).

The second relation expresses that the total energy of the N molecules

is equal to the allotted amount E^. Let ej denote the energy associated

with a molecule represented by a point in cell 1, so that ei is a function of

01, <^2> ••• <f>ip> the coordinates of the first cell. Let e^ be the energy associated

with a molecule represented by a point in cell 2, and so on. Then the

total energy of, the N molecules, when the distribution of coordinates is of

class A, will clearly be aiei + ajej + ..., so that we must have

'te,as = E, (203),
8= 1

and on variation of this we obtain the relation

'XeMs^O (204).
*=.l.-l!
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If there are other relations they will in general be derived from equations

of this same type, expressing that the total of some quantity fi summed

over all the molecules will have an assigned value. The integral equation

will be of the form

't fisa, = M (205),
S= l

and the corresponding relation between the quantities Ba^, Saz, ... will be

'tfiMs = (206).
.... g^i

In many problems there will be six equations of this type, the different

fi's representing three components of linear momentum, and three com-

ponents of angular momentum. We may, however, be content to take one

relation as typical of all, and shall suppose it to be given by the equations

just written down. •

Following a well-known procedure, we now multiply equations (201),

(204), (206) by undetermined multipliers p, q, r, and add corresponding

members of these equations and equation (200). We obtain

«=»
C 2 nci )BK=X \l + 2^ + ^og-~+p + q€s + rfiA8a„

and the maximum value of K is now given by the equation

T TlCt

Since Oi, Og) ••• are all supposed to be large quantities, the term ^— may

be neglected, and we obtain

^^,-(i+i>),-(g^«+rM«)
^207).

If T is the quantity defined in expression (192) the value of a^ will be

Tw, where t refers to the s-th cell. Equation (207) becomes

and since equation (207) was true for every cell, this equation will hold for

all values of <f>i, <f)2,
... 4>2p- Changing the constants, this equation may be

rewritten

r^Ce'^^'e-^'^'^''-'^^'--'' (208),

in which the one typical quantity /a is now replaced by the actual series of

quantities /ij, /Lta, .... Using this value for r, the law of distribution of

coordinates (cf. expression (192)) is seen to be given by

^^-2fte^-(r,Mx + r,/x,+
...)^^^^^^_^^^^^ ^^09).
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In the particular case in which there are no constant quantities except

the energy, this reduces to

Ce~^^'d<f>,d<f>^...d(l>,p (210).

106. Suppose that certain of the coordinates, say ^i, <^2, •••
<t>»,

enter

into the energy e only through their squares, so that the value of e is of

the form

€ = ^Mi' +hM' + ... + i/8«</>/ + <I>,

where <t> does not involve
<f>i,<f).2,

...
<f>g,

but only <^g+i, (f>g^2, ••
<l>2p-

Then the

law of distribution may be written in the form

This shews that there is no correlation between the distributions of

^1, <f)2,...4>8-
The law of distribution of any single coordinate, say 0i, is

of the form

/ e
d<l>r (211),

the constant being determined from the condition that the integral, taken

from ^ = — 00 to ^ = +00, shall be equal to unity.

The mean value of the contribution from
(f>i

to the energy is

j^hMr'e-'^^'^^'d<f>, ^

Jo

and similarly for the other coordinates. The mean value of

s
is accordingly jj, and since this has also been seen to be equal (cf. equations

(186)) to ^sRT, we must have

2hRT = 1,

expressing the constant h in terms of the temperature.

Of the coordinates <^i, <f)2,
...

(t>s,
which enter the energy only through

their squares, three may always be taken to be the velocities u, v, w. The
results obtained in this section may accordingly be expressed by the

equations

^« = ^'^^= |-;;^= p;^! = p;^^ = . . . =^ = ^ijr . . .(212),

expressing the theorem of equipartition of energy in a new form.
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Examples of Distribution of Coordinates.

Gas with infinitesimal hard spherical molecules.

107. As a first instance of the use of the formulae just obtained, we may
apply them to the case of the gas already considered in Chapter II, in which

the molecules are infinitely small hard elastic spheres, the external physical

conditions being the same at every point of the space occupied by the

gas. Such molecules have only three degrees of freedom, representing their

freedom to move in space, so that the 2p coordinates ^i, (^^, ... 02p reduce to

the six coordinates u, v, w, x, y, z. The number of molecules which at any

instant will be in collision will be infinitesimally small, so that the potential

energy of the gas, arising out of the elastic forces at collisions, will always be

infinitesimal, and so may be neglected in comparison with the kinetic energy.

The total energy of the gas may accordingly be supposed given by

E = ^mt{u^-¥v'' + w'') (213),

so that e in formula (209) may be put equal to \m (u^ + v^ + vf). We may
further take fi^, fi^, yus the three components of linear momentum to be

identical with mu, mv, mw, and /X4, fi^, /x^ the three components of angular

momentum to be given by

fj'i
= m {yw — zv) etc.

Thus the law of distribution is found to be

(7g-Am(w2+»3+t^!!)g_m(r.«+w+r3«;)+2n(j/M>-zr) dudvdwdxdydz ...(214).

The quantities G, h, r^, r.^, r^, r^, r^, r^, as yet undetermined, can be

evaluated from a knowledge of the total number of molecules, the total

energy and the total momenta, by the method already used in § 26.

108. No mass-rotation. In the commonest case in which the gas has no

motion of rotation as a whole, each of the three components of angular

momentum of the whole gas must vanish, and this is easily seen to lead to

the conditions r4 = rg = rg = 0. The law of distribution is now seen to be

(Jg-hm(u^+v'^+w^} g-m(r,u+r,v+r,tv) dudvdwdxdydz (215).

This can also be expressed in the form

£)(,-h7nHu-u,Y^+(v-v,)^+(w-w,m dudvdwdxdydz (216),

in which D, Uq, Vq, Wq are new constants, and it is easily found that the com-

ponents of the total momentum of the N molecules are Nmu^, Nmvo, Nmw^,

so that Uq, Vo, Wq are the components of the velocity of mass-motion of the

gas, as in § 26. The circumstance that x, y, z now occur only through the

differentials dxdydz, shews that the law of distribution of velocities is
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the same at every point of the gas. On replacing DO by A, where O is the

whole volume of gas, the law of distribution of velocities alone is found to be

. ^e-ftm[{u-Mo)*4-(«-r.)»+(w-«;.)2]^^(^^^y; (217),

agreeing exactly with formulae (25) and (102), and incidentally identifying

the h of this chapter with the h previously used.

109. No mass-motion. When there is no mass-motion Mq, Vq, Wq vanish,

and the law of distribution (215) reduces to

Q^-km(u"'+ifl+w^.) dudvdwdxdydz (218),

agreeing of course with (101), on putting CO. = A.

110. External field of force. Let the molecules be acted on by an

external field of force, such that a molecule at x, y, z has potential energy ;^,

y^ being a function of x, y, z but not of u, v, w. Then, in addition to the

kinetic energy expressed by equation (213), the molecules have potential

energy 2%, and the total energy is

liJ = ^ [^m (u^ + v^ + lu^) + X] (219).

The value of e in formula (209) may now be taken to be

^m {v? + ^+ w^) + X-

In the case in which there is neither mass-rotation nor mass-motion, the law

of distribution of coordinates becomes

(7g-Am(«=+t,'-f«^) e~^^dudvdwdxdydz (220).

This formula shews that at every point of the gas the law of distribution

of velocities is simply
^Q-hmiu^+rfi+w"-) dudvdw (221),

and so is identical with that already found for a gas not influenced by an

external field of force. Integrating with respect to u, v, w, formula (220)

becomes

GJ-^.e-'^^dxdydz :...(222),

giving the law of distribution with respect to the x, y, z coordinates. This,

however, is simply the law of distribution of density in the gas. If p is the

density in the element dxdydz, expression (222) must be the same as

— dxdydz, so thatm ^

P^Poe-"'^ (223),

where po is a constant given hy po= C a/ j—-^ and so is the density at points

at which % = 0.
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Molecules of finite size.

111. By reasoning exactly similar to that used in § 57, it is clear that

the law of distribution of velocities (221) must hold even when the molecules

are of finite size. The law of distribution of density (223) will not, however,

be valid except for molecules of infinitesimal size.

Molecules of complex structure.

112. If the molecule has possibilities of internal motion and of rotation,

its energy e will be of the form

where e^, e^ denote respectively the energies of internal motion and rotation.

Corresponding to these motions there will be coordinates of position and

velocity <^^, <^2, ••• ^2*, the energies Cf, e^ being functions of these coordinates.

The law of distribution of coordinates, in the special case of no mass-motion

or mass-rotation, is seen from formula (210) to be

^g-Am(«HrHM-'-=) g-2A(e,+e,) dudvdwdxdy dzd4>,d<^^ . . . d<^^ .

.

.(224),

again shewing that the law of distribution of velocities alone is the same

as for infinitely small hard spherical molecules, namely that given by formula

(221).

A inixture of molecules of different kinds.

113. Exactly the same method can be applied to a mixture of molecules

of different kinds. The method is quite general, but for simplicity of state-

ment we may suppose that there are only two kinds of molecules present.

The first kind will be supposed identical with the molecules already considered

in § 104, the second kind will be supposed to be of mass m', and to have

coordinates of position and velocity

ir,,^^,,...^^' (225).

We follow the methods of §§ 105, 106 ; there will be two equations of the

type of (201), one for each kind of molecules, but only one equation as before

of the type of (204), (206). The laws of distribution are readily seen to be as

follows

:

For the first kind of molecules (cf formula (209))

:

(7g-2A.g-(r,M.+r,^,+ ...) d<j>,d(^2 . • d<f>2p .(226).

For the second kind of molecules

:

Cr/g-i./ie'g-(r,M,'+r,,^'+ ...) d^^d^^^ . . . df^' (227).

Here e, fi^, fi^, ... refer as before to the energy and momenta of molecules

of the first kind, while e', /*/, fi^, ... are the corresponding quantities for
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molecules of the second kind. The constants C, C are different for the two

kinds of molecules, but the constants h, r^, r^, ... are the same for both.

The discussions of §§ 107—112 can be applied equally to a mixture of

gases. Two particular results may be noticed as being of special importance.

I. When there is mass-motion but no mass-rotation, the laws of distribu-

tion of the u, V, w coordinates will be (cf ^ 108, 112)

j^e-*'«i(«-««)'+<*-''«>'+<'*-«'<'''idwtZrc?w (228),

(j^'g-Am'[(M-Uo)H(i^t.o)'+(«'-u.o)^]f£wdt;(^W (229),

and these formulae are true for molecules of finite size, and capable of rotation

or internal motion, as also for molecules acted on by external fields of force.

The constants h, Uq, Vo, w^ are the same in the two formulae. When there is

no mass-motion, the formulae assume the simpler forms

M g-AmfwHr^Hw^) dudvdw (230),

\j^'g-hm'iv:^+^+w^-) dudvdw (231). .

II. When the molecules are supposed infinitely small, and are acted on

by an external field of force, the laws of distribution of density in space are

(cf. formula (223))

p = ^„e-2Ax ..(232),

[p' = p,'e-'h^' • (233).

Here p, p are the densities of the two kinds of gas, % is the potential

energy of a molecule of the first kind in the field of force, and -)( is the

corresponding quantity for a molecule of the second kind. If the field is

such that the potential energies are proportional to the masses, we may put

^ = m F, ;j^' = w! V, and the formulae become

p^p^e-^mv (234),

lp' = p;e--'/im'F
, (235).i;

Molecular and Atomic Dissociation and Aggregation.

114. A final and important illustration of the method is found in its

application to the case in which the molecules are not of fixed permanent

types, but are capable of dissociation and recombination, or of forming

molecular aggregates.

For simplicity in exposition, it will be assumed that the units under

discussion are molecules, and that the compound structures formed of these

units are molecular aggregates. The same analysis will apply, with suitable

limitations when the units are atoms and the aggregates are molecules, and

also, at any rate so far as mathematical theory is concerned, when the units

are ions or electrons and the aggregates are atoms or molecules.
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Let the different types of units be distinguished by the suffixes o, yS, 7, . . .

,

and let the various types of aggregates which can be formed out of them be

indicated by the suffixes a/8, ^7, ..., a/97, •••» ^tc. The aggregate oyS is of

course formed of the two simple units a and /3 in combination, and so on.

Some convention or definition is necessary to determine the exact stage

at which the separate units are to be considered replaced by the aggregate

system, or vice versa. Let two units not influenced by each other have

energies E^,, E^\ so that the energy of this pair of units is E^-VE^. As
the units approach within one another's influence this expression for the

energy of the combined system will not in general be adequate ; we must

add to it certain cross terms depending on the coordinates of hoth units.

Denote these by Wa.fi, then the energy of the system, say E,.^, will be

given by
E^^^E^^-E^-^W^^ (236).

We shall say that the units a, /3 lose their identity as separate units, and

that the aggregate comes into existence as soon as Tf;^ becomes appreciable,

and similarly for the reverse process. Thus aggregation takes place as soon

as Wo.^ attains to a value which differs appreciably from zero ; dissociation

takes place as soon as TTa^ falls to a value which does not differ appreciably

from zero.

115. We shall suppose the number of units of type a not in combination

to be Na, and similar meanings attach to Nfi, ... A^a/s, •• Aapy, •.•• The total

number of units of type a, whether in combination or not, will be taken to be

9l„, and similar meanings are assigned to ?^^, 5^?^, etc. As motions and changes

take place in the whole system, the quantities N^, N^, ... Nap, ... Napy, ... vary,

owing to the occurrence of dissociations and recombinations, but the quantities

'^a, 9?^, Sfly remain permanently the same. By a process of pure counting, we

arrive at the equations

Na^ + Nap + Nay+... + 2Naa + NaPy+... = '^L (237),

Np + NaP + Npy^... + 2Npp + NaPy+...=% (238).

For the Na separated systems of tjrpe «, we shall suppose the law of

distribution of the coordinates <f)i, ^2, ••• of the system to be denoted by

fa(<f>i, <f>2,
•'), so that the number of these systems having coordinates within

a range d<f>i, d<f)2, ... will be

Nafa{<t>u <!>.,. •.)d<p,d<}>, (239),

and this, reverting to a notation already used in § 13, will also be denoted by

ra(<t>i, <i>2...)d<f>,d<\>2 (240).

so that Ta = Nafa- Similar meanings will be attached to the symbols

T/s, Ty, ... Tap, etc. We have, from the meaning of the law of distribution.

jj...fa{<f>i, <f)2, ...)d<f>id(f>2...=l,



114-116] Examples of Distribution of Coordinates 93

so that Na^ jl...T^(<f>i,<})i,...)d(f>id<f}2 (241).

To save printing we shall denote the right-hand member of this equation

by /xa, so that our equation becomes

and equations (237), (238), etc., become

Sfla =fr^ +y^a^ ^-f^ay + • • • + 2 /^^a + /^a^y + (242),

% =Jt^ ^f-^-^ + /^/3y + . • • + 2 /^^^ + A^y + (243).

Throughout all changes, the quantities ?Ra, '^», ••• remain unaltered; the

energy also remains unaltered, and if this be denoted by (B, its value is

given by

(B=^E,ra+J*EpTp-\- ...+J*EapTap + .....(244),

116. Let us agree to adopt the artifice explained in §§ 50, 105, to limit

the variation of the coordinates of the various types of molecules to a

finite range. Let us divide up the possible range of coordinates for a

single molecule of type a into n^ equal " cells," the possible range for a single

molecule of type /3 into n^ equal cells, and so on. The range for a com-

pound molecule of type a/3 will then be n^w^ cells, if for the moment we
regard any combination of an a molecule with a ^ molecule as a compound
of the a^ type. If we only regard these as forming a double molecule when
the intermolecular force exceeds a certain amount, then it follows that

double molecules can only occur in certain of these ria np cells, and not in all

— it does not at present matter in how many.

Let us now consider a special class of system—class A—in which there

are

«! , ttj . . . single molecules of type a in the respective ria cells,

A, /Sa.-. „ » „ ... ^ ., .. ., % ,. -(245),

(a;8)i,(a/3)2... double „ „ „ a^ „ „ „ «»% „ ,

and so on.

Each arrangement of molecules which form a system of class A will be

represented in an element of the generalised space which forms a fraction

of the whole. Using equations (237), (238), etc. this becomes

1

n>n^^^...
.(246>
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Now the number of ways of distributing the rdles of the various con-

stituent molecules so that conditions (245) are satisfied is

aj a,!... A! /3, ! . . . (a/3), ! (a/9),

!

.(247).

Here the factor ^a ! is the number of ways in which the S^la permanent

constituent molecules of type a can be permuted inter se, a, ! is the number

of ways in which the molecules in the first of the Ua cells can be permuted

inter se, and so on. Expression (247), then, gives the number of elements

which represent systems of class A. Multiplying expressions (247) and (246)

together, we find that the fraction of the whole generalised space which is

occupied by systems of class A is

^-=
so \. :^^^: (248).

nJ^^nJ^P ... «i! 02!...

117. The value of 0a just found is a generalised form of that given

by expression (68). If we proceed as in § 44, using Stirling's Theorem

[equation (69)] in the form

Lt log p ! = I log (27re) +(p + ^) log^

,

p=cc e

we obtain log (9a = (7- S (a, + ^)log -* - S (^,+ i) log -*- ...

2 ((a^), + i)log
n^n^ e

where (7 is a constant depending on the constants 5la, 3*1^ ...««, % From

this equation it follows that the normal state is obtained by making ^ a

minimum, where

^ =/^» i«g7 +/-^ log^l + ... +y;„, log^^ + (249).

The variation of ^ is subject to the energy equation (244) and to

equations of the type (242) expressing the permanency of the separate types

of permanent molecules. If we vary equation (249) and add the variation of

equation (244) multiplied by an undetermined multiplier X, and that of the

equations of the type (242), (243) ... multiplied by /^a, /^^ ..., we obtain

^^ = /(log -Ta + \Ea + fic) axa +. .

.

+ /(logT„^4- a£'„^ + /Xa + At^) St„^ + ...

+ /(log T<.« + \Eaa + 2At„) hTaa + . . . ,
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and the condition that ^ shall be a minimum is given by the systems

of equations

log Ta + X.-fi'a + /i« = 0, etc.,

log Tap + XEap +fla+/^p = ^, ©tC.,

log Taa + X-E'aa + 2/ta = 0, CtC,

etc.

Changing the constants X, fj,a, /Mp ..., and substituting for Eap , Ea.a • • these

equations lead at once to the equations

Tp = Be-^^^P

etc.

In general, for the multiple molecule ajSy ... we have

T^py,,, = ABC ... e-'^^(^a+^P^^y + - + ^aPy..) (251).

These formulae not only give the laws of distribution for molecules which

are capable of aggregation, but also for ordinary molecules in collision or

exerting force upon one another in any way.

118. From the well-known formula in attractions

where p, V are density and potential at the point cc, y, z, it follows that we
can write W„^py,„ in the form

^a^y... = i (%a + %^ + Xv + • • •).

where
x^-

is the potential of the molecule of type a in the field of inter-

molecular forces arising from the other molecules, and so on. Hence in

equation (251) we may write

TaPy... ^'^a^^-fy (252),

where i/r„ = ile-2''^a-/'A'a, etc (253).

We may therefore regard the probability of a combination of molecules

having any specified coordinates as the product of the probabilities of the

constituent molecules having the appropriate coordinates, if we take the

probability of a molecule of type a having its coordinates within the usual

range d^^d^^ ••• to be

^g-2A^„-AXadf,(i^, (254).

Since the quantity x<i does not involve the velocity coordinates it is clear

that the analysis of § 106 can be made to apply to this case, and hence that

the result expressed by equation (212) is true, even when intermolecular
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forces are taken into account. Thus we see that the law of distribution of

velocity coordinates is unaltered by the presence of intermolecular forces, and

that the law of equipartition of kinetic energy remains valid independently

of the existence of such forces.

In particular the law of distribution of velocities of molecules in collision

with one another is the same as that of free molecules. It is frequently but

erroneously assumed that molecules which have penetrated a certain distance

into one another's fields of force will, on the average, have less kinetic energy

than corresponding free molecules. Our analysis has shewn that this is not

the case.

Of course a single molecule which moves into a position in which its

potential energy is % will, in so doing, lose kinetic energy ;^, but what is

often overlooked is that the molecules which do this were not originally

average molecules ; they were selected molecules, being those of which the

kinetic energy initially was greater than ;;^. Initially their kinetic energy

was greater than the average: the work done against repulsive forces just

uses up this excess of energy. The matter is perhaps understood most

clearly by noticing that the motion of a swarm of molecules into a repulsive

field of force lessens the density but not the mean kinetic energy (or

temperature) of the swarm (cf, § 110).

Before leaving the subject we must notice the similarity between the

effects of an intermolecular and an external field of force. If ;^,, instead

of being the potential of a molecule of type a in an intermolecular field of

force, had been the potential in a permanent external field of force, then

the law of distribution of molecules of type a would, by § 110, be exactly

the same as that expressed by (254), except that %„ would have been replaced

by 2x«.

Maxwell's treatment of the Partition of Energy.

119. The doctrine of the equipartition of energy in a system of molecules

of varying masses was discovered and enunciated by Waterston* in 1845,

in the paper which has already been referred to. He states the doctrine in

the following form :
" In mixed media, the mean square molecular velocity is

inversely proportional to the specific weight of the molecule. This is the

law of the equilibrium of vis-viva." Lord Rayleigh, in a footnote, says

" This is the first statement of a very important theorem. The demonstra-

tion, however,... can hardly be defended." Exactly the same theorem was

brought forward independently by Maxwell in 1859, in the British Association

* Phil. Trans, clxxxiii. p. 1.
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paper already referred to*. He states the proposition: "Two systems of

molecules move in the same vessel ; to prove that the mean vis-viva of each

particle will become the same in the two systems." The question was again

brought into prominence by the publication of a paper by Boltzmann in

1861 f. In 1879 Maxwell also published a paper on equipartition in which

he regarded the whole question from a somewhat different standpoint
J.

In

what follows we shall treat the question from Maxwell's point of view, the

only difference being that the mathematical analysis can be put much more

concisely by the help of the conception of a generalised space.

120. We again consider the dynamical system of n degrees of freedom

already specified in § 78. Its configuration is determined by n coordinates

?i, ^2, ••• qn (255),

and the n corresponding velocities

^1, q^, ••• qn (256).

The kinetic energy L will be a quadratic function of the n velocities (256),

and therefore also a quadratic function of the n momenta

Pi, Pi, ••• Pn (257)

defined by the equations (cf. equations (129))

dE
Ps = 5- , etc (258).

It is known to be possible to transform this quadratic function into a sum
of squares of the form

L = ^(c,7)i^ + C^V2+---+CnVn') (259).

where the rj's are linear functions of the momenta (257), and are moreover

such that the modulus of transformation is unity ; that is to say

all"
!'••••

^i
=l (260).

The quantities 771, %, ... are spoken of as " momentoids." Since L must
necessarily be positive for all configurations of the system, it is clear that

each of the coefiicients Ci, Cg, ... c„ must necessarily be positive.

* "Illustrations of the Dynamical Theory of Gases;" Phil. Mag. Jan. and July, 1860.

Collected Works, i. p. 378.

t " Studien iiber das Gleichgewicht der lebendigeu Kraft zwischen bewegten materiellen

Punkten," Sitzungsber. der K. Akad. Wien, lviii.

+ " On Boltzmann's Theorem on the average distribution of energy in a system of material

points," Camb. Phil. Trans, xii. Collected Works, ii. p. 713.

J. G. 7
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We may accordingly express the energy E of the system in the form

E=V+L (261)

= V+^(c,vi' + C,V2'+--- + CnVn) (2(J2),

where Fis the potential energy, and function of the qs only, and Cj, Cj, ... Cn

are also functions of the q's only.

121. We shall now represent all possible configurations and velocities of

this system in a space of 2w-dimensions, having

qi, q2, ••• qn, vi, V2, ••• vn (263)

as coordinates. In virtue of relation (260), it is clear that any assemblage of

systems will be represented in the present generalised space by fluid of the

same density as that by which it was represented in the former generalised

space of § 81. If therefore the fluid in the present space is taken to be

initially homogeneous, it will remain homogeneous throughout all time*.

The volume of the generalised space for which q^, q^.-.qn lie within

specified ranges dq^, dq^ ... dqn, while Vi^ V2 • Vn have all values such that

E < Eo, is given by

dq^dq^ ...dqn MI...CZ771, drj^ ... drjn (264),

where Vi) V2 •• Vn have all values subject to

C,Vi' + C2V2'+...+CnVn'<2(Eo-V) (265).

The integral is a Dirichlet Integralf of which the value is known to be

j,^^;^(c,c,...0-*(2^„-2F)^" (266).

Differentiating with respect to Eq, we find that the volume representing

systems for which q^, q^... q^, lie within the same range as before, while E
lies between E^ and E^ + dE, is

2dq,dq, . . . dqndE^^ {c,c, . . . c^)
"
* {2E, - 2 F)i" " ^

. . .(267).

If we introduce a new condition that ?;„ is to lie between rjn and ?;„ + dr^n,

the alterations necessary to transform expression (267) to suit the new

* This treatment seems to obviate, in a simple manner, a criticism which has often been

urged against Maxwell's original proof. Maxwell takes coordinates in which the kinetic energy

is already expressed as the sum of squares, and assumes these to form true Lagrangian co-

ordinates. Unfortunately it is not always possible to find coordinates satisfying these conditions.

To take the simplest case, the kinetic energy of rotation of a rigid body can be expressed as a

sum of squares in many ways, but in no case are the coordinates true Lagrangian coordinates.

If, for instance, we write

2L = Au}i^+ Bur + ^wg^,

we know that I uidt, etc., are not true Lagrangian coordinates,

t Williamson, Integral Calculus, p. 320.
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conditions will consist in writing n — 1 for n, 2Eo—2V—Cn'nn for 2Eo — 2V
and introducing the new differential drjn. Making these alterations the

expression becomes

2dq,dg,...dqndEdvnf^F^:;^dc^C2•••Cn-^)-H^Eo^

The ratio of this expression to (267), on replacing Vtt by F (^), is found

to be

ra») (2g.-2F-o„W)iC-^>
J

r(jn-i)r(i) (2£._2F)t<"-2) """"" ^^'"*>-

This is the fraction for which ?;„ lies between rjn and 7;^i + drjn, of all the

systems for which q^, q^... qn, E lie within the specified small ranges. Write

so that Kn is the kinetic energy corresponding to the momentoid 7]n ; then

dKn

V2Z;'

and therefore expression (269) becomes

T{^n) {E,-V-Kn)^^''-^)dKn

cjd'nn =

r(ir^-i)r(i) (^„-F)i(«-2) v^.
.(270).

122. The mean value of Kn averaged over all the systems for which

Q'lj 9'2 ••• 9'n and E lie within the specified ranges, say Kn, is therefore

^ _ Fj^n) r^^=^o-v(E,-V-Kn)i^--'^ ^ ^ ,^
'•"r(in-i)r(i)J;,„=o (^o-F)M«-2) ^" ^^»'

of which the value, after integration, is found to be

^n =^^ (271),
it/

so that from symmetry _ _ _
K, = K,= ... = Kn (272).

In words, this result states that, averaged through all those parts of the

generalised space in which qi,q2... qn and E have specified values, the energies

of the various momentoids are equal. By addition, it follows that, averaged

through all parts of the generalised space for which E has a given value,

the energies of the various momentoids are equal.

123. Formula (269) expresses the law of distribution of ?/„, and

formula (270) that of Kn- These formulae assume special forms when n

is very large.

When n is very large,

riW = r (in + i) F (in -j^)^^(n-l) [F Qn - i)}^

7—2
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s/E,-V
En-V

Putting = K, so that k is the value of each expression of the

equality (272), the law of distribution (270) reduces to

1 -i^
-7==We ^ KdKn (273),

which is easily seen to be identical with the law of distribution already

obtained (cf. equation (211)).

124. The result reached in § 122 is Maxwell's main result. If we wish it

to apply to the motion of dynamical systems, we must suppose an assemblage

of systems started with energies intermediate between the narrow limits

Eq and Eq + dE, in such a way that their density in the generalised space

is uniform, i.e., so that all values of the coordinates and momenta which are

consistent with the energy lying within the specified limits are equally

probable. The separate systems have of course no interaction one with

another. It then follows that initially and throughout all time the mean
energies of the various momentoids are equal.

By addition over all possible values of the energy, we can arrive at the

result that for an assemblage of systems having all possible values for the

coordinates and momenta, provided only they are started so that the initial

density in the generalised space is uniform, the mean energies of the various

momentoids are equal.

We can, however, obtain a result more general than this. The motion

in the generalised space is confined to the loci E = constant, so that if we

take an initial distribution of density r in the generalised space such that

T = <^(^) (274),

where <f>(E) is any function of the energy, then this distribution is a

permanent distribution, i.e., equation (274) is satisfied throughout all time.

And by addition of the result obtained in § 122, it follows that in this

assemblage the mean values of the energies of the various momentoids

are equal
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Continuity of path.

125. The weakness of Maxwell's method lies in the fact that it deals

only with the average properties of all the systems represented in the

generalised space and gives no information at all as to the properties of

any single system. Attempts have accordingly been made to extend or

modify Maxwell's result so that instead of applying to an average taken

over all systems, it shall apply to the motion of one system averaged through

a great length of time. It is obvious that this extension of the result cannot

legitimately be made without further assumption of some kind. For in-

stance it may be that the path of the single system is entirely confined

to a certain definite region of the energy surface on which it is moving, and

in this case it would obviously be fallacious to calculate the time-average

by integrating over the whole surface. The assumption which is usually

made, in order to make the extension to a time-average possible, is that

generally known as the assumption of continuity of path. It is " that the

system, if left to itself, will, sooner or later, pass through every phase which

is consistent with the conservation of energy"*. Lord Rayleighf points out

that " if we take it quite literally, the assumption is of a severely restrictive

character; for it asserts that the systems, starting from any phase, will

traverse every other phase (consistent with the energy condition) before

returning to the initial phase. As soon as the initial phase is recovered,

a cycle is established and no new phases can be reached, however long the

motion may continue."

It is, however, pretty clear that the assumption cannot be justified, if

taken quite literally. It is known that in connection with every dynamical

problem, there are an infinite number of re-entrant paths—the "periodic

orbits" of astronomy—so that obviously a system on one of these paths

will never reach the phases outside the one particular path, while a system

not on one of these paths can never reach the phases represented by points

on them.

This objection might be met by arguing that the re-entrant paths only

form an infinitesimal fraction of the whole, and that it is quite conceivable

that all the phases outside these re-entrant paths form a single path. If

this were so, it would be immaterial, for a system on this single path,

whether we averaged over the whole energy surface, or only over the path.

This defence, at any rate at first sight, does not seem very plausible. It

requires us to suppose that the paths are all re-entrant, but that one of

them is infinitely longer than all the others added together. It must also

be noticed that there are dynamical systems in which all the paths are

* Maxwell, Collected Works, n. p. 714.

t " The law of partition of Kinetic Energy," Phil. Mag. [5] xlix. p. Ill, 1900.
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re-entrant and of finite length, as for example occurs in the case instanced

by Lord Rayleigh (I.e. ante) of a particle describing an orbit about a centre

of force, the law of force being /tr,

126. An escape might conceivably be made possible by assuming that

the system does not continually traverse a single path undisturbed, but that

by the agency of external forces it is at times removed from one path to

another. If the action of these external agencies is sufficiently fortuitous it

may be that it is legitimate to suppose that the system passes through all

phases on the energy surface. A warning must, however, be entered as to

the nature of the agencies which may be regarded as fortuitous. The
essential elements of the question may all be represented by the simple

case of a billiard ball moving on a smooth billiard table. Here the impacts

of the ball on the cushions are not fortuitous. In fact the cushions may be

replaced by a field of repulsive force which becomes infinite at the cushions

and vanishes elsewhere, and the motion of the ball is now undisturbed motion

in this field of force. Again, if the system consists of two billiard balls

moving upon the same table, the collisions between them cannot be regarded

as fortuitous, because the impulsive forces between them at collisions can

be treated as a special case of a continuous system of forces acting between

.

them. Obviously the same consideration covers the case of a gas of the

most general kind moving undisturbed by external agencies, in a closed

vessel of any kind.

Extension to time-averages.

127. If Maxwell's assumption were true, the extension to the time-

averages of a single system would follow at once*. For the assemblage

of systems represented in the generalised space will all pass through the

same stages in succession, so that the time-average for any single system,

when the average is taken over a sufficiently long time, is exactly the same

as the time-average averaged over all the systems. But Maxwell's result

gives this time-average averaged over all the systems. For, as regards

averages taken over all the systems, equations (271) and (272) are true at

every instant, and so are true when averaged over a long time. Hence, if

continuity of path may he assumed, these equations are true for the time-

average of a single system averaged over a very long time.

If, however. Maxwell's assumption is untrue—and it must be borne in

mind that no single system has yet been discovered in which it is not

untrue—there seems to be nothing to be said in justification of deducing the

equality of the time-averages from the theorem of § 122. The main point to

be noticed is that if the systems are subject to' fortuitous disturbances, there

is no reason for supposing that a homogeneous distribution of density in the

* Cf. Lord Eayleigh, Fhil. Mag. [5] xlix. p. 108.
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generalised space (or, more generally, a distribution satisfying equation (274))

will be permanent, or, conversely, that the permanent state will satisfy the

condition expressed by equation (274). And if this is not so, the attempted

extension to time-averages fails entirely.

128. It may nevertheless be true that ' for fortuitous disturbances of a

special type the distribution expressed by equation (274) remains per-

manent, and it may also be that the converse is true, and that the only

permanent distribution is that represented by equation (274). For instance,

if a gas consists of an infinite number of molecules, we can select one

single molecule from the rest, and regard the remainder of the molecules as

the dynamical system, while the single molecule plays the part of the

fortuitous disturbing agency. The disturbances are not fortuitous in the

true sense, but since the single molecule collides only with an infinite number

of different molecules in turn, it might be legitimate to regard its action as

fortuitous. And again the energy of the system is not constant when the

single molecule has been remov-ed from consideration, but it might be legiti-

mate to neglect the deviations of energy which are infinitesimal in comparison

with the whole.

In the following sections a treatment of equipartition and law of distribu-

tion in a gas is given, which is the outcome of the train of thought just

sketched out. The investigation, however, is not based oh the somewhat

doubtful assumptions which have just been referred to ; it is based upon the

assumption of molecular chaos, of which the legitimacy has been established

in Chapter IV of the present book. We shall consider only the case of a gas.

An alternative treatment of the Partition of Energy in a gas.

129. We shall suppose a gas to be composed of a number of exactly

similar dynamical systems—the molecules. We suppose that each molecule

is surrounded by a sphere of molecular action of diameter a-, these spheres

being of such a size that two molecules exert no action upon one another

except when their spheres intersect.

When the spheres of two or more molecules intersect, an " encounter " is

said to take place, lasting until the spheres again become clear of one another.

The individual molecules are now to be the systems under discussion, and

the "encounters" are to play the part of the fortuitous agencies which

disturb their motion. Each molecule is to have n degrees of freedom, in

addition to the three degrees of freedom represented by the motion of its

centre of gravity in space, and the possible states of a single molecule are

to be represented in a space of 2n + 3 dimensions, of which 2w represent the

internal coordinates and momenta of the molecule, and the remaining three

represent the velocities of the centre of gravity.
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Binary Encounters.

130. We shall begin by considering binary encounters only. That is to

say, we work on the hypothesis that the event of a sphere of molecular action

being intersected by two other spheres simultaneously is so rare that it may
be neglected.

We treat this case as follows. As soon as an encounter begins between

two molecules their existence as single molecules is supposed to be abruptly

terminated, and their representative points are removed from our generalised

space of 2n + 3 dimensions. During the progress of the encounter the two

molecules together will be supposed to form a new dynamical system—

a

double molecule. This system will be specified by 4?i + 9 independent co-

ordinates, In for the internal coordinates of each constituent molecule, six

for the velocity and position of the centre of gravity of one molecule rela-

tively to that of the other, and three for the velocity of the centre of gravity

of the whole system in space. Hence any such system can be represented

by a point in a space of 4?? -I- 9 dimensions. We shall not, however, require

the whole of this 4w -I- 9 dimensional space. If x, y, z, x, y', z are the co-

ordinates of the centres of the two molecules, the condition that an encounter

is beginning or ending is

{x-xJ-\-{y-yy-{-{z-zJ = a-'' (275),

In the 4?i + 9 dimensional space this equation will be the equation of a

certain " surface " S (of dimensions 4?i -I- 8), and the representative points of

all double molecules will be inside 8. We shall find it convenient to denote

each double molecule by two representative points, since the roles of first and

second molecule can be allotted in two different ways.

Let Tj be the density of representative points in any small element of

volume in this new space, and Ti the density in the original space of 2n + 3

dimensions. Then the necessary and sufficient conditions for a steady state

are

§-« (2^«).

W = " • (277).

in the latter of which the change in Tj includes that caused by the formation

and dissolution of double molecules.

131. To determine the relation between Tj and t,, we make the assump-

tion of § 15, namely, that the gas is in a state of molecular chaos. Having

made this assumption we proceed to calculate the number of encounters of a

given kind which occur in an intei-val dt. If |i, ^j--- ^m. are the internal
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coordinates of a molecule, the number of molecules per unit volume for which

^1, ^2--- ^m, u, V, w lie within a range

d^id^i • • • d^mdudvdw (278),

will be Tid^i d^2 ...d^^dudv dw.

Hence, as in expression (4), the number of collisions in time dt for which

the coordinates of the first molecule lie within the range (278), and those of

the second within a similar range in which the variables are accented, while

the line joining their centres meets a unit sphere in a given element of

surface dw, will be

TjTi'Fo-'^ cos 6 d^id^i

.

. . d^2nd^id^2 • • • d^'^dudvdivdu'dv'dw'dwdt .

.

.(279).

This number of collisions must however be equal to the number of double

molecules which cross a certain element of the surface S in the 4n + 9 dimen-

sional space in time dt, and this number will be

T^^idSdt (280),
ot

where dS is the element of the surface S representing collisions of the type

. . 9e
in question, and ^ is the velocity in this space at the element of surface dS

measured inward along the normal. The equation of the .surface S being

equation (275), we may clearly suppose the normal to be the shortest distance

from d*S to

X— m' = 0, y —y' = 0, z — z' = 0,

and therefore write.

e" = (a; - x'Y + (y - y'f -f (^ - z'f.

Thus % =^^ ~{x-a;') + ... = l(u-u') + ...^ Fcos ....(281),
at e dt

where I, m, n, as in Chapter II (§ 17), are the direction-cosines of the line

of centres. The value of dS corresponding to collisions of the type specified

will clearly be

dS= d^i ... d^2ndtidvdwd^i ... d^'zndu'dv dw' a-^dco (282).

96
If we substitute the value for ^ from equation (281) and for dS from

equation (282) into expression (280), and equate the value so obtained to

expression (279), we obtain, after dividing through by common multipliers,

t,t/ = t, (283).

This equation may be regarded as giving the density Tj at all points on

the surface S in the 4?i -I- 8 dimensional space, in terms of the densities at

points in the 2w-|-3 dimensional space.
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132. Since the systems represented in the 4n + 9 dimensional space are

not acted upon by any external forces, we have, as in § 85 (equation (148)),

^' = <284),

where DjDt denotes dififerentiation with respect to the time as we follow the

fluid in its motion. We may however write

Dr. dr^ ds dT2 /oqk\

'Di^'di'^diirs
^^^^^'

\yhere drz/dt denotes the rate of increase at a fixed point, ds/dt is the velocity

along a stream line, and dr^/ds is the increase of Xg per unit length along

the stream line. In virtue of equations (284) and (276), equation (285)

reduces to

t = « : (2««)'

so that Tj must be constant along every stream line.

Let Ti, t/ be the densities in the 2n + d dimensional space, at points

occupied by the representative points of the two component molecules at the

formation of a double molecule, and let Tj, t/ be the densities at the points

representative of the same two molecules at the dissolution of the double

molecule. Then by equation (283) Xir/and Tjt/ are the two values of Tj at

the two ends of a single stream line in the 4w + 9 dimensional space, and,

therefore, by equation (286),

TiTi' = TiTi' (287),

the same result, it will be noticed, as is obtained by the iT-theorem of

Chapter II (cf equation (21)).

Since the motion is dynamically reversible we may equally well take Ti, Ti'

to be the densities at formation, then Tj, t/ will be the densities at dissolu-

tion, and the same result holds.

From this it follows that in equation (277) the decrease in Tj caused by

the formation of double molecules of any specified kind is exactly counter-

balanced by the increase caused by the dissolution of double molecules of

the same kind. Hence in equation (277), dr^/dt may be taken to be the

change in Tj caused solely by the continuous motion of the fluid, and may be

treated as r^ has been treated, leading to the result that Ti must be constant

along every stream line. ~-

133. We have found, therefore, that the conditions for steady motion,

on the hypothesis of binary encounters, may be expressed as follows

:

(a) Throughout the 2/1 + 3 dimensional space, t^ must be constant

along every stream line.
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(yS) Throughout the 4n- + 9 dimensional space, t^ must be constant

along every stream line.

(7) At every point on the boundary of the 4?i + 9 dimensional space

we must have
T2 = Ti t/.

To these may be added a fourth condition

:

(S) At every point on the boundary of the 2w + 3 dimensional space

{i.e. at infinity) the flow across the boundary must be nil, this condition

securing that steadiness is maintained without a supply of new systems from

infinity.

These conditions are necessary and sufficient for steady motion.

Ternary and Higher Encounters.

134. By a simple extension of the method already explained, the

possibility of encounters of ternary and higher orders may be considered.

For instance, to take ternary encounters into account we imagine systems

of triple molecules, these being represented in a suitable space, in which

the number of dimensions will be Qn + 15, namely 2?i + 6 for each constituent

molecule, less three for the position of the centre of gravity of the whole

system. The density in this space being T3, we have as conditions additional

to those just given :

(e) Throughout the 6w + 15 dimensional space, T3 must be constant

along every stream line.

(^) At every point on the boundary of the 6w + 15 dimensional

space we must have

135. Encounters of higher orders may be similarly treated. If tk is

used to denote the density in the space of 2Kn + QK — 3 dimensions, in

which J^T-ple molecules are represented, the complete system of conditions

for steady motion is

(i) Along every stream line in the 2Kn + QK — 3 dimensional space

T^ = constant (288).

(ii) At every point on the boundary of this space

rK=ran (289),

in which t^, tj refer to the two systems of molecules of orders a, b, of which

the encounter results in the particular system of order K which is repre-

sented at the point in question (we therefore have always a + h-=K).

If encounters of all orders are to be taken into account these conditions
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must be satisfied for all values of K from ^ = 1 to ^ = oo . In the case of

K=l, equation (289) must be interpreted so as to become identical with the

condition (8) of § 133.

It will be noticed that if these conditions are satisfied for all values up to

K = cc no hypothesis need be made as to the smallness of the radius of

molecular action in comparison with the free path. The only assumption

now made is that the gas is in a state of molecular chaos.

Solution of Equations.

136. As before, let
;)^;

be a quantity, a function of the coordinates of

a molecule or system of molecules, such that throughout the undisturbed

motion of the molecule or system,
;j^

maintains a constant value, and such

that when two molecules or systems combine to form a new system, the x of

the new system is equal to the sum of the x's of the component systems.

Speaking loosely we may say that x is defined as being capable of exchange

between molecules at a collision, but is indestructible.

Then a solution of equations (288) and (289) will be seen to be

logT^=S;,^;...(A'=l, 2,...^) (290),
K

where %x is the value of x for a -fiT-ple molecule, being by definition equal to

the sum of the %'s of the K constituent molecules. If ;^i, ;^2 ••• are all the

possible values of
-x,,

the most general solution is

\ogT^ = t(A^Xi + ^.X^+"-) (291).
K

As regards the number and meaning of the ^'s the question stands as in

§ 106 ; and for the reasons there given we may, in the case of a gas which has

no mass-motion, reject all except

%i = 1'

%2 = E, the energy of a molecule.

Hence the solution becomes

T^ = ^^e-^''<i^+^' (292),

where E, E' ... are the energies of the separate molecules, and W is the

potential energy of the intermolecular forces acting between molecules, this

not now being included in E and E'.

This solution agrees with that of § 117, and equipartition follows at once.
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Comparison of the two foregoing Methods.

137. We have now obtained the same result as that obtained in

Maxwell's treatment of equipartition, but in place of his assumption of

continuity of path, we have made the assumption of molecular chaos, or,

more accurately, we have assumed that the number of collisions of a given

kind is that given by expression (279). It is infinitely probable, but not

certain, that this expression will be accurate, so that it is infinitely probable,

but not certain, that (292) will be the solution in a steady state. This is

exactly the result arrived at before,

138. It is of interest to notice that it could have been predicted a priori

that it would be necessary to supplement Maxwell's treatment by. some

assumption of this kind.

This, as we shall now see, follows from the fact that the problem is

a " statistical " problem, and not a dynamical problem of the ordinary type.

A dynamical problem may, in accordance with accepted usage, be said to be

one of statistical mechanics when the data and objects of inquiry are not the

actual values of the various coordinates, but the law of distribution of these

coordinates. Since the data of a problem in statistical mechanics do not

completely specify the dynamical coordinates of the system, we are, in

, a problem of statistical mechanics, discussing an infinite number of different

systems at once, and without differentiation inter se. The motion of these

systems will naturally diverge in the course of time. It may be that after

the motion a single statistical specification can be given which covers all

except an infinitesimal fraction of the systems. In this case a solution may
be said to have been found to the problem. It cannot be that a solution can

be obtained which covers all the systems, the reason for this being that, even

after the initial system has been fully specified statistically, there are still an

infinite number of undetermined variables ; and, by giving suitable values to

these, we can obtain any chosen infinite number of relations between the

coordinates of the final result, and can therefore cause this final result to

disagree with any single statistical specification. It is therefore clear that

a statistical problem must always have an element of uncertainty in its final

solution, although in virtue of the infinite number of the variables, this

uncertainty may be represented by an infinitesimally small probability of

error : it may, in the terminology previously used, be " infinitely probable
"

that the result is true.

We have found that the assumption of molecular chaos, on the other

hand, leads to a definite certain result, and not merely to one which is

infinitely probable. Incidentally, this circumstance enables us to trace out

some of the inner significance of this assumption. We see at once that the

assumption rests on the supposition that the systems with which it deals
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have at every instant a definite statistical specification. It therefore just

excludes those systems, an infinitesimal fraction of the whole, which wander

away from the statistical specification obeyed by the majority. In other

words, it implies that any system under discussion has the statistical

specification of the majority, and therefore naturally leads to a certain result

instead of leading merely to one of infinite probability.

As regards Maxwell's treatment of equipartition, enough has perhaps been

said to shew that in dealing statistically with a gas, we can never arrive at

absolute certainty : it is therefore impossible to reach any definite result

unless a loophole of escape fi-om absolute certainty has been introduced into

the premises on which we work.

Mechanical Illustration of Equipartition.

139. It may be useful to illustrate the abstract results which have been

obtained in this chapter by a concrete mechanical example.

Let us again suppose, as in Chapter II, that the molecules of a gas are

hard, rigid spheres ; but, in order to get more than the three degrees of freedom

represented by the motion of translation of a molecule, let us also suppose

that the centre of gravity of these spheres does not coincide with their

geometrical centre, so that rotations are set up by collisions.

Each molecule possesses an axis of symmetry, namely, the line joining

the centre of gravity to the centre of figure. Let us take any two other

axes, fixed in the molecule in the plane perpendicular to the axis of

symmetry, and let us denote the components of angular velocity about these

two axes by CTj, vj^, and that about the axis of symmetry by -573. If the

corresponding radii of gyration are k, k, k', the kinetic energy L will be

given by
2L = m {u^ + v^ + w") + mk" (wj^ + W) + rnk'^in^-.

It is clear at the outset that the velocity ra^ is peculiar in that its value

cannot be changed by collisions. It follows, then, that the system, as at

present specified, does not satisfy Maxwell's condition of continuity of path.

Or, again, there are other constants besides the energy, namely the Wj co-

ordinates of the various molecules, which remain constant throughout the

whole motion, just as, in the example of § 59, the values of u^ for the various

molecules remained constant. It is, then, clear that the general result

obtained in the present chapter will not apply to the present system, without

some modification being made.

140. The most obvious modification to make is to ignore the rotation •BT3

altogether, just as, in finding the law of distribution for a system of sym-

metrical spheres in Chapter II, we ignored all the three rotations. In either

case the motion is the same as if the ignored rotations were non-existent.
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Let us, then, suppose the kinetic energy given by

2L=m (w^ + «2 + w^) + mk" {-uTy^ + vr^^).

There are now five degrees of freedom, and the separate terms on the right-

hand of the above equation may be regarded as contributions from separate

momentoids, in the sense required in § 106. The analysis of this chapter

accordingly shews that in the steady state we must have

rau' = m,v^ — muF — 'm]<^'sr^ = 7nk^'ST2 (293).

We can, however, investigate the steady state by considering the effect

of individual collisions, somewhat after the method of Chapter II. It will

be of interest to do this, and so to verify the result expressed by equation (293).

The main importance of the problem, however, is that we shall obtain

information, which will subsequently be found useful, as to the rate at

which the gas, if disturbed from the steady state, returns to that state.

This information cannot be obtained by the general methods which have

been used to determine the steady state.

The Transfer of Energy in a system of Loaded Spheres.

141. Let us suppose the distance of the centre of gravity from the

geometrical centre to be r in each molecule, r being small in comparison

with cr, the diameter of the molecule. In the final result it is obvious that

only even powers of r can occur, for we can replace r by — r without altering

the nature of the gas. The solution of the whole problem when r = is

known, for the problem then reduces to that of the symmetrical spheres

of Chapter II. For the present purpose we shall be content to find the

solution as far as r^ only, neglecting r^, 7^^, etc.

In addition to the rectangular axes x, y, z fixed in space, let us suppose

there to be a system of rectangular axes ^, 77, ^ fixed in each molecule,

having the centre of gravity for origin, and coinciding with the three axes

of rotation already specified. The coordinates of the geometrical centre will

then be 0, 0, r, and the moments of inertia about the axes ^, t], ^ will be

mA?, mk^, mk'^ respectively.

Let us suppose that for any single sphere the directions of the axes |, r}, ^
are connected with those of the fixed axes x, y, z by the following scheme of

direction-cosines

:

^ y) K \

(294).
X h, k, ^3

y mi, rth, wis

z Ml, ^2, W3

The condition of the sphere at any instant may be regarded as determined
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by u, V, w, the velocities of the centre of gravity parallel to x,y,z\ Wj, uja,

the angular velocities of rotation about the axes ^, 77 ; and the nine direction-

cosines of scheme (294) of which three only are independent.

There are therefore eight independent variables necessary to determine

the condition of a sphere. In discussing a collision between two spheres,

it is necessary to know not only the conditions of the two spheres, but also

\, fjL, V, the direction-cosines of the line of centres at impact referred to the

fixed axes x, y, z. This introduces two more variables, so that a collision

requires eighteen independent variables for its complete specification.

142. Let us examine first the changes in the eight variables of a sphere,

which are produced by an impulse / acting along the radius of which the

direction-cosines are \, fi, v.

Referred to ^, rj, ^ axes, the point of application of this impulse may be

taken to be 0, 0, r. The components of the impulse will be

{ly\ + inifi + riiv) I, etc.

and the components of the resulting couple

— r(l2\ + 1712^1 + n^v) I, r(lj\ + miiJi + niv)I, 0»

Following the notation already used, let variables after the impulse be

distinguished by a horizontal bar. Then the new velocities of translation

will be given by

u = mH , etc (295),

and those of rotation by

.(296).

_ rQ^X + m^fi + n^v) ^'^^^^^ rf ^

— r (Zi\ + Wi/A-frZiv) J

143. Let us next regard this impulse as arising from a second sphere, of

which the condition is determined by accented variables n', v, w' ..., the

line of centres at impact having direction-cosines \, fi, v.

Before impact the components parallel to x, y, z of the velocity of the

centre of the first sphere are

W+T(Zi-Gr2 — ^2'53"l).

V +r (wii in-g — mjOTi),

w -H r (7I1CT2 — ii^tsi).

Hence. if a, yS, ^ denote the components of the velocity of the centre of the

second sphere, relatively to that of the first, we have

a = u —u-\-r{l^*a^ — 1210^' — lirs^ + Lm^, etc (297).
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The components of relative velocity after impact can be deduced by

writing u, u' ... in place of u, u' .... The quantities u ... are given by

equations (295), (296) ; the quantities u' ... are given by similar equations,

except that / must be replaced by -/, since the impulse on the second sphere

in the direction \, /*, v is -/. Substituting this value, and comparing with

equation (297), we obtain

2/\ r^I
d = o ^ [li{lj\ + m^ii + rhv)+ liihX + m^fi + niV)m mkr ^

and there are similar equations for jS, y.

Multiplying these three equations by X, fi, v and adding, we obtain

- 2/
\a + ixfi {- irj = \0L-¥ ^l^ + vy {I + Ar^) (298),

Tih

where ^ =^ {(^iX + Wi/a + nivf + (/gX + m^ti + n^vf

+ (^/X + m,> + n^vf + {U\ + TO„> + n^vf] . . .(299).

At the moment of greatest compression, the components of relative velocity

will be ^ (a + o), \{^-\- B)> i- (7 + 7)» ^^^ therefore the relative velocity along

the line of centres will be

^ (Xa + /ji^ + vy i- \a + fi^ + vy).

This must vanish, and therefore, by equation (298),

\a + ^l^ + vy = -{\0L\'^l'B-\-vy) = —{l + Ar^).

Hence, since we are neglecting r^,

- ={\- Ar'){\a + fi^ ^ vy) (300).

Substituting this value for / in equations (295) and (296), we obtain the

velocities of the first sphere after impact.

144. Let us now pass to the consideration of impacts in which the two

colliding spheres are in given conditions, but the direction cosines X, jm, v may
have any values which are consistent with a collision.

Since the spheres are loaded, the path described by the centre of the

second molecule before collision relatively to that of the first is not a straight

line ; but the relative velocity a, yS, y is the same for all the impacts now being

considered, so that this path is always the same as regards shape and direction,

being in fact a curtate or prolate cycloid according to the magnitudes of the

velocities.

Imagine the geometrical centre of the first molecule reduced to rest and

surrounded by a sphere of radius cr. Let the centre of the second molecule

describe its path relatively to the first molecule ; then, whenever an impact

occurs, this centre must lie on the sphere of radius a.

J. o. 8
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Let us start from any point P on this sphere and trace the relative path

backwards. This path, being a curved line, either may or may not intersect

the sphere again in some point R.

In the former case an impact at P will only be possible if an impact has

occurred while the centre of the second sphere was at some point in PR.
In the latter case there is no limitation of this kind, so that the probability

of an impact occurring on any small region surrounding P is simply propor-

tional to the projection of this area on a plane perpendicular to the direction

of the relative velocity at impact.

Owing to the smallness of r, the. relative path will, in general, be only

slightly curved. If the maximum curvature of this path is less than that

of the sphere of radius a, then obviously so long as the angle between the

normal at P and the relative velocity is acute, the relative path will not

intersect the sphere except at P.

<a, ^, 7-

Fig. 4.

145. For the present we shall assume the velocities of the two molecules

to be such that this latter condition is satisfied. In this case the proportion

to the total number of collisions of those for which the angle between the

directions of the relative velocity and line of centres lies between 6 and 6 -f- dO,

is easily seen to be 2 sin 6 cos Odd, the limits for 6 being and ^tt.

By [g-] we shall denote the average value of any quantity q taken over

all collisions in which the two spheres are, before impact, in certain specified

conditions.

By squaring and adding equations similar to (295),

_ _ 2/ /2
V? + v"" -^ ixf = u^ + v"" \- w"" { (\u + ULV -\- vw) { —^ (301 ).

Before averaging this equation, we must calculate

[—r and — (\u + U.V+ vw)

If V is the relative velocity,

\a + /x/3 + 1/7 = F cos ^

;
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hence by equation (300) we have, as far as r^

Ti

Now
[
V^ cos« ^] = r*' f

"
2 sin ^ cos» ^c^^ = | V^

Jo

Hence

in

I

Again, from equation (300),

= \V^-2r''{AV^G09^e\

— Cku + itv + vw)m
- r^ {2 \Ah?'\ aw + 2 [Afxv'\ {/3w + yv)\:. .(302).

If we take the direction of the relative velocity for pole, and denote

the coordinates of a point on a unit sphere, referred to this pole, by @, <l>,

then the proportion of cases in which the direction (k, //., v) meets this unit

sphere within limits d®d(^ is — sin © cos ®d®d^. Hence
TT

1 ri"- r^nM = - Vsin^cosededO (303).

If we take the coordinates of the axis of a; to be (0a;, ^x), we have

X = cos @ cos ©a, - sin © sin 0a; cos (<I> - <I»a;) • • •

'

(304).

Substituting this value for X in equation (303) and integrating, we

obtain

[V] = i(l+cos^©,)=i (1 + -^,) (305),

and similar equations give [fju^], [v^].

If we suppose the axis of y to be (©y, 4>j,), then

/i = cos © cos Sy — sin © sin ©^ cos (<E> — ^y),

and multiplying this by the respective sides of equation (304) and integrating,

we obtain

[\/i]=.JC0S©a,C08©j,= |^ (306),

and similar equations give [fip], [vX].

146. Substituting these values in equation (302),

where D = 'ZlA\^]au + X[Afiv](^w + yv) (307).

Or, simplifying,

r/
(\U + av + vw)m ^ (au + /3v + yw) — r^D,

8—2



116 General Statistical Mechanics and Thermodynamics [ch. v

and hence from equation (301),

\u^ + v''-\- mT^] = w2 + y2 + ^2 ^ om + ySv + 7W + ^F2

-2r2(Z)+[^F2cos2^]) (308).

On the right-hand side, the upper line, by equation (297),

= ^ {^2 + y2 + m;2 + (u + af+iv + ^f -H (w + 7)2}

= |2 (u^ + u^) + r2^^' (^'wg' — Za'wi' — l^vrz + h'^i)

— 7*^2 (ti ?2'5''i '''a — ^1^2 ^1 '''2 + ••)•

If therefore we write

IV^ + v^ + w^ = c^,

m2 + i;» + w2 =C^,

and adopt a similar notation in accented symbols, equation (308) may be

written

- r'X (k h'^i'ST, - ...)-2r^D + [AV^ cos^ 6]) .

.

.(309).

147. We must now carry the process of averaging still further, so as to-

apply to all possible positions of the axes of the colliding spheres ; that is to

say, we must average over all collisions determined by given values of the

ten velocities

u, V, w, u', v', w', -oTi, HT2, w/, n^z (310).

Let the result of averaging any quantity q in this manner be denoted

by Iq].

The value of any quantity p, averaged over all possible positions of the

axes of the first sphere, all positions being regarded as equally probable, will

be -T- i pdo), and the value of the same quantity averaged over all positions

of the axes of the second sphere will be j— I pdw. The probability of an

impact occurring for any given positions of the axes is, however, propor-

tional to V, and this depends on the positions of the axes. Thus, averaging

over all collisions for which the coordinates (310) have given values, we

shall have

11
qVd(oda>

{q]=jr (311).

N Vdcoda
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To calculate {c"} from equation (309), we must first evaluate {^} . .
.

,

[lil^]..., [D], and {^F^cos"^}. Since, however, we are neglecting r^, we

require [l^] ... only as far as terms in r, and [W] ... and the remaining

averages only when r = 0.

From equation (297)

If we write

f72 = {u' - uf + {v' - vf + {w' - wf,

so that (J is the relative velocity of the centres of gravity, we have, as far as

terms in r,

VV= U + -jj'E {u — u) {li'vT^' — Utffi — ^itara + h'^i)-

Now obviously 1 1 pdcodoi = 0, when p has any of the values

tj , L^ "., ti , ^2 • • • J nn '•- > etc.,

so that
1

1 Vdwdw = IGtt'^CT' as far as terms in r, and hence, from formula (311),

{{(~l,'^vr^{u'-u)\da)d(o'

and since obviously -^—
^ \\ lidmdo) =^, this becomes

fin _ r'ST2{u' -u)

With the help of this and similar other expressions, we have as the

averaged value of one term in equation (309)

r2 [u (Zi CT2 -...)} = ^^^

—

- 2w {u - u).

The remaining averages are required only when r = 0. We may therefore

write U for F, and u' — u for a, etc.

It is obvious at once that when r=0, [l\l\]=^^, and hence that as the

averaged value of a further term in equation (309) we have

ks, regards the remaining terms, on putting r = we obtain

[D] = 2 [[AX^-] au] + 2 [[A^lv\ {^w + 7^)} (312)

by equation (307) ; where, since the various systems of quantities may now
be supposed to vary independently,

[[A\--\ au] = {^1 {V} {u'-u)u = l{l+ ^^^^T^
^''' " "^^ "* ^^^'

fl^H (^^ + 7^)1 = [{V -v)w + (w' - w) v]
(^^-^^K-w)

j^ j^ ^^^_
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Also from equation (299)

Substituting these values in equation (312), we find that

and in a similar way, for the remaining term in equation (309),

rr

[AV cos^ ^} * 1^4 1 V' {cos'' 6\=^^V^\ (cos'' 6) 2 sin 6 cos dde,

of which the value, as in § 145, is found to be

S¥ ^^ 3P'

since we may now neglect r altogether.

Hence, averaging equation (309), we obtain, on substituting the averages

which have been found for the separate terms,

{^} = i (c^ + c') + i r^ {^' + ^") + '''^'^'^.'^'^
2t*' (u' - u)

There is an exactly similar equation for [c'^\, and by addition of these two

equations we obtain, after simplification,

9~.2

{c2 + c'^} = c' + c'2 + fr" (^2 + zt'^) - gp U\

If the symbol A is used to denote the increase caused by collision of the

quantity to which it is applied, the equation just obtained may be written in

the form

{A(c^+0}=r'|t(i^« + ^'")-|^j (313),

in which U has again been replaced by V.

148. An expression has now been found for the mean change of trans-

lational energy produced by collisions in which the molecules have given

velocities. A summation extending over all collisions which occur during a

short interval of time dt will lead to an expression for the total change in

the translational energy of the gas during that period. From the form of

equation (313) it is clear that this expression will contain r" as a factor.

But as we are neglecting powers of r of a degree higher than the second,

we may put r = in all terms multiplied by r^. It follows that to find

SA (c'-' + c'2) as far as r^, we need only calculate 2 (vr^ + nr'^) and S U^ on the

assumption that r = 0, the summation extending in each case to all the

collisions which occur in the time dt.
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This neglects a correction which is required by the considerations men-

tioned in § 144, a correction which would consist in adding to the expression

for 2A(c^+ c'^) a quantity equal to the sum of all the separate corrections

to be applied to the right-hand member of equation (313) in cases in which

this equation fails. Now each separate correction will clearly contain r^ as a

factor, and on averaging this must be further multiplied by a factor propor-

tional to the number of cases in which the correction is required ; i.e. by

a factor which vanishes when r=0. The correction to the final result is

therefore of a higher order of small quantities than r^ and may therefore

be neglected.

149. So long as we remain in ignorance of the law of distribution of

coordinates, it is impossible to carry any further the process of direct

averaging. We may, however, in calculating S (w- + •cr'^) and ^U^, assume

the law of distribution of velocities to be that which would obtain in the

case of r = 0. We therefore assume the number of molecules per unit

volume for which c and in- lie within ranges dc, dnr to be

^TTvAe-^'^'fiTiT) c" dcdvT (314).

The number of collisions per unit time per unit volume for which V lies

between V and F+c^F is, from expression (52),

.V^y/^%-i^-^^F»cZF ; (815).

Hence the mean value of F^ averaged over all collisions is

•'-^ =^ = |C2 (316

e-hhmV^V^dV ^"^

I

where C^ is the mean value of c^ averaged over all the molecules of the

gas.

The mean value of -ut^ + 'st'^ averaged over all collisions is clearly 2^2, '^ "j-v"***

where w'^ is the average value of -nr^ taken over all the molecules of

the gas.

Substituting these values for {vr'^ 4- ot'^J and
{
V^] in equation (313), we

obtain

{A(c«-hc'^)l = r^(f^-^') (317).

Let us write

H = ^mk^vr'^,

K = ^mC'',

so that K is the mean energy of translation, and H is the mean energy of
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rotation, excluding rotation about the axis of symmetry. Then equation (317)

can be written

{^(c^ + OI = 3^3(H-|K) (318).

150. There are v molecules per unit volume, and, also per unit volume,

there are by formula (53)

collisions per unit time. Hence summing equation (318) over all the

collisions which occur in time dt, we find that the change in the sum of the

values of c^ for all the v molecules, which is produced by collisions in

time dt, is

sS("-«'<)-"<^Va* • (^19)-

The sum of the values of c^ is, however, vG^, or — K, so that the change

in time dt is

2i/ dY. ,

mSF'^* :
(^^''^

Equating expressions (319) and (320),

dv^ _ ^r'a-H

If, for the sake of brevity, we write

^-%-^/E (^^^).

so that /3 is a constant depending only on the structure of the molecules, and

3 .

use the relation K = -7-7
, this becomes

^ = ,SWK(H-fK) (323).

Since the total energy of the gas is unaffected by collisions, and since also

the energy of rotation about the axis o'f symmetry of the molecules is

unaffected by collisions, it follows that H + K is unaffected by collisions.

Thus

^ = -* = -;3.Vk-(h-Jk) (324).

151. From these equations,

J^(H-fK) = -t^l/\/K(H-fK) ....- (325).

V / 27r

-VaW("-«'^) (321).
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Since Vk is always to be taken positively, it is clear that

|log(H-|K)

is always negative, so that log (h — |k) continually decreases, until finally

H-|K = (326).

This equation, then, expresses the relation between H and K in the steady

state. Now H is the energy of two momentoids, of which the separate

energies in the steady state must be equal from symmetry, and similarly K is

the energy of three momentoids, of which the separate energies are equal in

the steady state. Hence equation (326) expresses that, in the steady state,

the energies of the five momentoids are equal, agreeing with the result

predicted by the general dynamical theory.

152. The general result that the ratio of distribution of energy is in-

dependent of the structure of the molecule may lead to striking results. In

the present instance, let us suppose almost the whole mass of the loaded

sphere concentrated at a point, which must of course coincide very nearly

but not quite with the geometrical centre, so that the weight of the remainder

of the molecule is very small by comparison. Then k is very small, and

since Jc^ta-^ is on the average equal to ^ G^ independently of the value of k, it

follows that OTi must be very great, becoming infinite in the limit when

k vanishes. In this case, then, the molecules will rotate with infinite

angular velocity.

153. If the values of H and K are slightly disturbed from the value

appropriate to the steady state, we have, from equation (325),

J^log(H-|K)=-f^WK,

shewing that the disturbance will decrease exponentially with the time, and

will fall to - of its value in a time 7=^ , of which the value, on replaciner
e 5/3z/Vk

' f s

3
fi from equation (322), and putting K = jy from equation (32), is found to be

20r^ (i^x/^)-- •••(«^n.

The factor in brackets is the mean duration of a free path (cf. equation

(55)), so that the time in question is

^^ X (the average duration of a fi-ee path) (328).

This quantity .naturally depends both upon the structure of the molecules

and the state of the gas. Its reciprocal will, so to speak, measure the
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amount of " grip " which the translational motion is able to obtain over the

rotational.

The problem of partition of energy in a system of loaded spheres was

first investigated by Burnside*. His result was, however, erroneous. The

correct result was subsequently obtained by Burburyf. In the same paper

Burbury calculates the rate of subsidence of a disturbance in a gas con-

sisting of two kinds of symmetrical molecules, the disturbance consisting of

a small inequality in the mean translational energy of the two kinds of

molecule. The corresponding calculation for loaded spheres was, so far as

I know, first given in papers by myself J.

* " On the Partition of Energy between the Translatory and Rotatory Motions of a set of

non-homogeneous Elastic Spheres," Trans. R. S. E. xxxiii. Part ii. (1887).

+ " On the Collision of Elastic Bodies," Phil. Trans, clxxxiii. p. 407 (1892).

+ "The Distribution of Molecular Energy," Phil. Trans, cxcvi. p. 397 (1901) ; and " On the

Partition of Energy in a system of Loaded Spheres," Quarterly Journal, xxxv. p. 224 (1904).



CHAPTER VI

PHYSICAL PROPERTIES : TEMPERATURE, PRESSURE, ETC.

Temperature.

154. The preceding chapters have contained a fairly complete investiga-

tion of the statistical dynamical properties of the systems under consideration.

The task before us now is to interpret these properties, which so far

have been expressed almost entirely in purely mathematical language, in

terms of the physical conceptions of temperature, pressure, etc. We may
first summarise and recapitulate the principal results which have been

obtained.

In § 93 we had under discussion a system of a very general nature, and

it was there shewn that a quantity dQ of energy added to the system from

outside had the effect of producing certain specified changes in the system. It

was shewn that for all changes of this type, the quantity kdQ must be a perfect

differential, where k was a purely mathematical quantity, defined in terms of

the constants and variables of the system.

From thermodynamical theory, it is known that -— must, under the same

conditions, be a perfect differential, where T is the absolute temperature on

the thermodynamical scale. This does not entitle us to identify k with 1/T,

but we proved (§ 96) that there must be a relation of the form ^ = -om>

where i2 is a universal constant. In this way the physical conception of

temperature is introduced and linked up with the purely mathematical

conceptions with which we have so far been dealing.

155. The next stage in the physical development is found in the proof

(§ 100) of the equations

E, = ^sRT, E^^^tRT, etc (329),

where E^ is a part of the total energy which is represented by s squared

terms in the general expression for the energy, and similarly E^, is the energy

represented by t squared terms, and so on. These equations are only true if
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s, t, ... are very large numbers, but we may legitimately state the result in

the form that the average energy of each squared term is ^RT. This result

is known as the Equipartition of Energy. It connects up the physical con-

ceptions of energy and temperature, and assigns a physical meaning to the

universal gas-constant R.

Consider any N similar and separate units (molecules, atoms, etc.) of the

system under discussion. In the total energy of the whole system there will

always be SiV" squared terms of the form

N
2im(M='-hi;2-Hw2) (330),
1

representing the kinetic energy of translation of the ^N units. This energy

may be identified with the E^ of equation (329), in which case s must be put

equal to 3iV, and we have the equation

t^m{u^ + v'' + w'') = ^NRT (331).
1

The value of expression (330) may, however, be calculated in another

way. It was seen in the last chapter that, no matter how complicated the

system may be, the law of distribution of the components of velocity u, v, w
is always the same as in the simple cases discussed in Chapter II, namely

Maxwell's Law,

Hence, for the complex system, the mean value of w^ + v^ -h uf^ for all the

3N units will be xy— as in equation (45), and the value of expression (330)

will be equal to this multiplied by ^mN. Thus we have

S^m(M2 + v2 + w2) =A^ (332),

and on comparing this value with that given by equation (331),

Th =
^'^ (333).

Thus the mean value of each squared term in the energy, which has already

been seen to be equal to \RT, is now seen also to be equal to jy ,
giving a

physical interpretation to the quantity h which has appeared, so far as a

mathematical multiplier, in the law of distribution.

156. To sum up, if the mean value of u^ for a number of units each of

mass m is denoted by v?, we have

\7rm^ = ^rmf' = \mw^ = -^ = \RT (334),
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and the mean kinetic energy of translation of any single unit is given by

^m{u^-¥^-¥w^) = i^mG^ = ~==^RT (335).

These equations give, perhaps, the simplest interpretation of temperature

in the kinetic theory. It is of the utmost importance to notice that, for the

kinetic theory, temperature is a statistical conception ; it is meaningless to

talk of the temperature of a single molecule.

Equalisation of Temperature.

157. The fundamental necessity for a relation between h and T becomes

clear on considering the way in which the quantity h was introduced into the

laws of distribution. It will be remembered that h first appeared in every

, ^4
}
case as an undetermined multiplier, multiplying the energy equation of the

' system. Different values of h must accordingly represent different values of

the total energy, which is again the same thing as saying that different A's

correspond to different temperatures.

In § 113, we obtained the law of distribution for a mixture of two different

kinds of molecules ; it was found that the quantity h was necessarily the same
for the two kinds of molecules : the physical interpretation of this is now seen

to be simply that the temperatures of the two kinds of gas must be the same.

If the gases were initially at different temperatures, they would finally reach

a normal or final state in which the laws of distribution would be those

obtained in § 113; the value of h would be the same for the two substances,

and therefore the temperatures would ultimately be the same. Thus the

process of attaining to the normal state would be physically accompanied by
a process of equalisation of temperature.

The analysis of § 113 does not in any way require that the two sets of

molecules should be those of gases actually mixed ; they may be molecules

(or atoms) of either gases or solids : the two substances may be actually

mixed, or in contact, or entirely separate. All that is required to establish

the mathematical result is that it shall be possible for energy to flow from

the one substance to the other. If this is the case, there is only one energy

equation for the whole system, and so only one value of h ; thus equalisation

of temperature must ultimately ensue. If, on the other hand, energy cannot

flow from one substance, or part of the whole system, to the other, there will

be more than one energy equation, namely one for each part of the system,

and so more than one value of h, and more than one temperature in the

final state.

In the next chapter (§ 252 et seq.) we shall consider the process of

equalisation of temperature from the point of view of thermodynamics and

entropy.
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Calculation of Pressure in an Ideal Gas.

Infinitely Small Molecules.

158. There are in the main two ways of introducing the pressure of a

gas into our calculations, these being analogous to the two ways of deter-

mining the law of distribution. The method which will be considered first is

based on general dynamics ; the second method, given in § 161, rests on the

conception of detailed collisions between the molecules of the gas and the

surface on which the pressure is supposed to be exerted. In the first instance

we give the simple analysis appropriate to the case in which the molecules

are supposed infinitely small and exerting only negligible forces on one

another except when close together.

Determination of Pressure hy the Method of General Dynamics.

159. For a gas, or any other aggregation of similar units, we obtained in

§ 110 the equation

p = p^e-'hmv
(33g)^

where p is the density of the gas at any point, and V is the potential of an

external field of force at the same point, so that wF is the potential energy

of a molecule of mass m.

The pressure p is connected with the density p by the well-known

hydrostatic system of equations

1 = -"'^.- <^37).

On substituting for p from equation (336), this becomes

dV
^^

= _,„^..r_ (338)^

giving on integration p = ^j— pQe~'^"^^

=2L (339)'

no constant of integration being added since p must vanish with p.

Using the equations — = v (§ 11) and ^^BT (equation (333)), the

equation just found may be put in the simpler forms

p^^^vRT (340),

giving the pressure in terms of the density and temperature.
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160. Mixture of gases. For a mixture of gases, we note that the total

density p required in equation (337) is the sum of the partial densities of the

different constituent gases. Thus equation (338) becomes

giving on integration i>
= +
2hm 2hm'

or, again, as in equation (340),

v + v' + ..

P = 2A
-=={v + v'-{-...)RT .(341).

The physical interpretation of these laws, as well as their extension to the

cases in which the simple assumptions underlying them are no longer valid,

will be reserved for a later discussion. In the meantime we shall see how the

same laws can be derived by a calculation of the pressure exerted on the

boundary of a containing vessel by the impacts of molecules colliding with

this boundary.

Determination of Pressure by the Method of Collisions.

161. In fig. 5, let dS be an element of the boundary of a vessel

enclosing a gas, and for convenience let

the direction of the normal to dS be

taken for axis of x.

Let there be v molecules per unit

volume of the gas, and let these be sup-

posed divided into classes, so that all the

molecules in any one class have approxi-

mately the same velocities, both as regards

magnitude and direction. Let Vi, v^, ...

be the numbers of molecules in these

classes, so that V1 + V2+ ' = v.

Let 2/i, Vi, Wi denote the components

of velocity of molecules of the first class.

These molecules may be regarded as

forming a shower of molecules of density

i/i per unit volume, in which every

velocity.

The molecules of this shower which strike dS within an interval of

time dt will be those which, at the beginning of the interval, lie within

a certain small cylinder inside the vessel (see fig. 5). The cross-section of

this cylinder is dS, its height is v^dt, so that its volume is UidtdS. The

number of these molecules is accordingly v^UidtdS.

Fig. 5.

molecule moves with the same
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Before impact with the boundary each of these molecules had momentum

normal to the boundary equal to mu-^. This momentum is reversed by

collision, so that the impulse exerted by each molecule is Imu^.

The sum of the impulses exerted by all the molecules of the class under

consideration in time dt is accordingly Imv^u-^dSdi, and since this aggregate

impulse is made up of a great number of very small impulses, it may be

treated as a steady pressure of amount ^mv^u-^dS.

The total pressure on the area dS, say pdS, will be obtained by summing

this expression for all the classes of molecules for which a collision with dS is

possible—that is to say, for all classes of molecules for which u is positive.

Since, however, positive and negative values for u occur equally in the gas,

the total pressure can be also expressed in the form

pd8^Xmv^u,HS .(342),

where the summation is over all classes of molecules.

The value of "ZviU^ is, howe.ver, the sum of the values of v? for all the

molecules in unit volume, and this is equal to vu^. Thus we have, in place of

equation (342),

p = mvu^ = pu^ (343).

We have seen (§156) that

mu^= mif = mw^ = ^mC^ = ET (344),

so that equation (843) assumes the forms

p=tpC' = vRT (345).

The total kinetic energy of all the molecules in a unit volume is

X^m(u^ + 'if + w^), which is equal to ^vmG^ or to |j9, by the first of

formulae (345). Thus

the pressure in an ideal gas is equal to two-thirds of the kinetic energy of

translation of the molecules per unit volume.

The second formula is identical with the formula (340) already obtained.

Before discussing its physical meaning we may note that if there is a mixture

of gases, the summation of equation (342) must be extended to all the types

of molecules, so that the final result, instead of equation (345), is

p = {v + v' + ...)RT (346),

agreeing with formula (341).

If a volume v of homogeneous gas contains iV molecules in all, then

{v+ v + ...)v = N, and equations (345) and (346) may be combined in the

single equivalent equation

pv = NRT (347).
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Physical Laws.

162. It will now be seen that the formulae obtained for the pressure

contain within them all the well-known laws of gases.

Avogadi'o's Law. The value of N is seen, from equation (347), to be

equal to pv/RT, a quantity which depends only on the physical state of the

gas, and not on the structure of its molecules. Hence we have Avogadro's Law

:

Two different gases or mixtures of gases, when at the same temperature and

pressure, contain equal numbers of molecules in equal volumes.

The number of molecules in a cubic cm. of gas at standard temperature

and pressure has already been taken (§ 8) to be iVo = 2*75 x 10'^

Daltons Law. Formula (346) shews that the pressure in a mixture of

gases is the sum of a number of separate contributions, one from each gas.

This is confirmed by Dalton's Law

:

The pressure exerted by a mixture of gases is equal to the sum of the

pressures exerted separately by the several components of the mixture.

The Laws of Boyle and Gha,rles. Clearly equations (345) and (347)

imply the laws of Boyle and Charles

:

The pressure of a gas is proportional to its density, so long as the

temperature remains unaltered; and is proportional to the temperature, so

long as the volume remains unaltered.

163. The various laws which have been predicted by theory, and are

found to be confirmed by the experimental laws of the last section, are of

course true only within the limits imposed by the assumptions made. The

principal of these assumptions has been that the molecules (or other units by

which the pressure is exerted) are so small that they may be treated as

points in comparison with the scale of intermolecular distances. Thus the

laws may best be regarded as ideal laws, the conditions for which can never

be absolutely satisfied, but which are satisfied very approximately in a gas of

great rarity. An imaginary gas in which the molecules have dimensions so

small in comparison with the other distances involved that they may be

regarded as points is spoken of as an ideal gas. Thus the foregoing laws are

always true for an ideal gas ; for real gases they will be true to within varying

degrees of closeness, the accuracy of the approximation depending on the

extent to which the gas approaches the state of an ideal gas.

164. As regards the first method of evaluating the pressure (§ 159), the

analysis in no way required that the medium should be gaseous, although

the resulting laws of Dalton, Boyle and Charles are usually thought of

only in relation to gases. Clearly, however, these laws must apply to any

J. G. 9
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substance with a degree of approximation which will depend only on

the nearness to the truth of the assumptions just referred to.

In point of fact the laws are found to be true (as they ought to be) for

the osmotic pressure of weak solutions. The intermolecular forces between

the molecules of the solvent and those of the solute can be allowed for in the

value assigned to V in the analysis of § 159, and the forces between pairs of

molecules of the solute may be neglected if the solution is sufficiently weak.

In a similar manner, the foregoing conception of pressure may be

extended to the pressure exerted by free electrons moving about in the

interstices of a conducting solid, and also to the pressure exerted by the

" atmosphere " of electrons surrounding a hot solid. Each of these pres-

sures p may be assumed to be given by formula (345), where v is the

number of free electrons per unit volume*.

Numerical Estimate of Velocities.

165. We have seen that the pressure and density in a gas are connected

by the relation

p = yG^- (348),

where (cf. § 30) C is a velocity, equal to 1"086 times c, the mean velocity of

all the molecules, or again is such that C^ is exactly equal to c^ the mean

value of c^ for all the molecules in the gas.

We have also found the relation

C' = ^^ (349),m
shewing that C is proportional to the square root of the absolute

temperature, and, for different gases, varies inversely as the square root

of the molecular weight.

166. As soon as corresponding values of p and p are known for any gas,

we can determine the value of C from equation (348).

For instance, the mass of a litre of oxygen at 0°C. and at the standard

pressure of 1"01323 x 10^ dynes per square cm. is 1 42900 grammes. Hence

for oxygen at 0°C. we have as corresponding values

p = 1 01323 X 10«, p = 1-42900 x 10-^

and equation (348) now gives us the value of G for oxygen at 0°C.,

C = 46r2 metres per sec.

At 0°C. the value of T is 273*1 (see § 8), whence equation (349) gives us

the value of K/m for oxygen,

- = 259-6 xlO^m
From this value of R/m for oxygen we can calculate the value of R/m for

* See Kichardson, The Electron Theory of Matter, pp. 445, 468 and elsewhere.
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any other substance, and equation (349) will then give G and c for any

temperature we please. The following table is calculated from recent

observations

:

Gas
(or other substance)

Hydrogen

Helium

Water vapour

Neon

Carbon-monoxide

.

Nitrogen

Ethylene

Nitric oxide

Oxygen

Argon

Carbon-dioxide ..

Nitrous oxide

Krypton

Xenon

Mercury vapour .

.

Air

Free electron

Molecular
Weight
(0 = 16)

2-016

3-99

18-016

20-2

28-00

28-02

28-03

3001

32-00

39-88

44-00

44-02

82-9

130-2

200-00

1835
(H= l)

Density *

(gms. per litre at

press. 10132 x

10^ dynes)

0-08987

0-1769

-89

•2504

-2507

-251

-3402

•4290

-782

-9768

-9777

-709

-842

1-2928

4127 X 10*

2085 X 10*

462 X 10*

412x10*

297 X 10*

297 X 10*

297 X 10*

277 X 10*

260 X 10*

209 X 10*

189 X 10*

189 X 10*

100x10*

64 X 10*

41-6x10*

[287 X 10*]

1-515x10"

Temp.
(Cent.)

c
(cms. per

sec.)

0" 1839x102

0° 1311x102

0° 615x102

100° 719x102

0° 584x102

0° 493x102

0° 493x102

0° 493x102

0° 476x102

0° 461 X 102

0° 413x102

0° 393x102

0° 393x102

0° 286x102

0° 228x102

0° 185x102

0° 486x102

0° 1-114x107

(cms. per

sec.)

1694x102

1208x102

565x102

662x102

538x102

454x102

454x102

454x102

438x102

425 X 102

380x102

362x102

362x102

263x102

210x102

170x102

447x102

1-026x107

We have seen that for oxygen jK/w = 259"6 x 10*, while the value of m
is found, as in § 8, to be 52 x lO"^* grammes. Hence, by multiplication,

i2= 1-35 X 10-1" (350).

This quantity is a universal constant, depending only on the particular

scale of temperature employed. It will be remembered that fi2 is the

kinetic energy of translation of any molecule whatever at a temperature of

1° absolute (cf. equation (335)).

This quantity |i2 is sometimes denoted by a, so that OjT is the kinetic

energy of translation of a molecule (or free atom or electron) at a temperature

of T degrees absolute. The value of o is

a = fi2 = 202xlO-^» (351).

* Kaye and Laby, Physical and Chemical Constants, pp. 10, 26; Bamsay and Travers, Proc.

Roy. Soc. Lxiv. (1898), p. 183, and G. Rudorf, PJiil. Mag. xvii. (1909), p. 796.

9—2
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Other numerical values which are frequently of service are

RT^ = 3-69 X 10-l^ olT, = 5-53 x 10"",

where To=21'6'l° (centigrade) and so is the temperature of melting

ice (0°a).

It must be understood that the accuracy of these evaluations of R, a, etc.,

is no greater than that of our estimation of Loschmidt's number for which

we have assumed the value iVo = 2"75 x 10^®.

167. We have now obtained our first insight, as regards quantitative

measurements, into the mechanism of the molecular motions of gases. The
order of magnitude of the molecular-velocities could, however, have been

predicted without actual detailed calculation.

For instance, if gas is allowed to stream out into a vacuum through

a small hole in the containing vessel, the velocity of efflux is nothing else

than the velocities of the individual molecules, which would have been

simply molecular-velocities inside the vessel, had the hole not been present.

Thus the mean molecular-velocity must be comparable with the velocity of

efflux of the main stream of gas, and "this velocity is known to be of the

order of magnitude of the velocities tabulated in the last column of the

table on the preceding page.

Or again, a disturbance at any point in a gas will produce an effect on

the molecules in its immediate neighbourhood. When these molecules

collide with those in the next layer of gas, the effect of this disturbance is

carried on into that layer, and so on indefinitely. Thus the molecules act as

carriers of the effect of any disturbance, so that the disturbance is propa-

gated, on the whole, with a velocity comparable with the mean velocity of

motion of the molecules, just as, for instance, news which is carried by relays

of messengers, spreads with a velocity comparable with the mean rate of

travelling of the messengers. The propagation of a disturbance in the gas

is, however, nothing but the passage of a wave of sound, and the velocity of

sound is known to be comparable with the values of C given in the table.

Velocity of Sound.

168. It is easy to find an exact formula for the velocity of sound. For,

if a is this velocity, we have the well-known formula

where 7 is the ratio of the two specific heats of the gas in question (cf. § 263.

below). On substituting for jo its value, ^/^C^ this equation becomes

a = \/^;y C.
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For diatomic gases at ordinary temperatures, 7 = 1^, so that for these

gases

a = -683(7= -742 (352),

shewing the actual relation between the velocity of sound and the velocities

C and c.

For instance, the table gives for air at 0° C, G = 485 metres per second,

whence formula (352) leads to a = 331*3 metres per second for the velocity of

sound in air, which approximates very closely to the true value.

Velocity of Effusion of Gases.

169. It is equally possible to find an exact formula for the rate of

effusion of a gas. In fig. 5 (p. 127), imagine that the element dS forms a

trap-door, capable of being opened at any instant. When this trap-door is

opened, the gas will stream out through the opening dS, and we have the

phenomenon of effusion through a small aperture.

We imagine the various molecules inside the vessel divided up into

showers of molecules moving with equal velocities, as in § 161. The number
of molecules of any specified shower, say the first, which will stream through

the aperture dS in time dt, will of course be the same as the number which

would have impinged on the element dS of the boundary had the trap-

door remained closed. It is therefore equal to u^v^dtdS as in § 161.

Thus the rate of effusion, measured in mass per unit time, is

tujVimdS (353),

where the summation extends over all the showers which can meet the

element dS fi:om the inside, and therefore, with the convention of § 161, over

all classes of molecules for which m, is positive. Using Maxwell's law, we
may replace v^ by

v[—) e-^'^'"-'du,

and the rate of effusion (353) becomes

vm (^Y Te-^rnu^udu^^l -^ = p /^ (354)
\7r/;o 2 V7r/tm V 27rm

The first of these formulae shews that the rate of effusion is the same as if

the whole gas of density p moved out of the aperture with a uniform velocity

^c, while the second implies the well-known law that

The rates of efflux of different gases at the same density and tempeixiture

vary inversely as the square roots of the molecular weights of the gases.

This law is confirmed in a striking manner by some experiments published

by Graham* in 1846. The following table shews some of the rates of efflux

* Phil. Trans. 136, p. 573,
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found by Graham for various gases coming through fine holes in a perforated

brass plate :

Gas
^'(specific gravity)

(air = l)

Eate of efflux

(air = l)

Hydrogen

Marsh gas

0-263

0-745

0-985

0-986

1-000

1-051

1-237

0-276

0-753

0-987

0-986

1-000

1053

1-203

Ethylene

Nitrogen

Air

Oxygen

Carbon-dioxide

The figures will give some idea of the degree of accuracy with which the

law is obeyed. It is of interest to note that early investigators used the

law as a means of determining the molecular weights of various gases*.

170. Thermal Effusion. From formula (354) it appears that the rate

of effusion of a gas increases with its temperature, being in fact proportional

to the square root of the absolute temperature when the density is kept

constant. Thus the rate of efflux of a gas into a vacuum is increased by

heating the gas, as is of course obvious from a consideration of the molecular

mechanism of efflux.

Formula (354) is strictly applicable only to the case of efflux into a

perfect vacuum. If there is a gas on the further side of the orifice, some of

the molecules of the issuing gas will collide with the molecules of the

external gas and will be driven back, reducing the rate of efflux. If, how-

ever, the density of the external gas is small, the number of collisions of this

kind will be few, and formula (354) will still give a good approximation to the

rate of efflux.

For experimental purposes, instead of using a single orifice or perforation,

it is convenient to use the large number of very small orifices provided

by the interstices in a plug of porous material—say of earthenware or

meerschaum. The phenomenon is then spoken of as " transpiration " rather

than " efi'usion."

Imagine a vessel of gas divided into two parts by a division, part of

which consists of a porous plug of the type just described. There will be

transpiration or effusion going on from each side of this plug to the other.

If the two chambers into which the vessel is divided are spoken of as A

* Leslie, Gilb. Annalen, xxx. (1808), p. 260 ; Bunsen, Gasometrische Methoden (Braunschweig,

1857), p. 127.
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and B, there will be some gas from A crossing through the porous plug

into B, and similarly some from B crossing

into A. And, if the pressures in the two

chambers A and B are each sufficiently-

low, the rates of transpiration may, as an

approximation, be supposed given by

formula (354). If the gases in the two

chambers are the same in all respects, the

two rates of effusion will of course be the

A 1
1 ^

same.
Fig. 6.

If, however, one chamber is kept

warmer than the other, then the rates of effusion will not be the same,

and we have the phenomenon of thermal transpiration.

Let Tj^, Tb be the temperatures of the two chambers, and let the corre-

sponding densities and pressures be pA, pB and p^, p^. If the temperature

difference is permanently maintained, the flow of gas will go on until a

steady state is attained in which the flow from ^ to 5 is exactly equal

to that from B to A, and from formula (354) this state will be reached

when
Pa\/Ta= Pb^Tb (355).

From the pressure equation, the ratio of the pressures p^ , Pb is given by

Pa ^ PaTa

Pb PbTb
'

and therefore in the steady state, as specified in equation (355),

frv^i <*^«>-

Thus if the two chambers are kept unequally heated, a flow of gas will be

set up which will continue until a difference of pressure between the two

sides is established, such as is expressed by equation (356).

This phenomenon has been investigated in a series of experiments by

Osborne Reynolds*. The two chambers were kept at steady temperatures

of S'' C. and 100° C. When a steady state was attained, the pressures

were measured, and it was found that, in cases in which the pressure was

sufficiently low, equation (355) was satisfied with very considerable accuracy.

For higher pressures this equation failed, as was to be expected.

171. Suppose that the chambers A and B in fig. 6, in addition to being

connected by the porous plug, are also connected by an external pipe, of

which the effect is to equalise the pressures in A and B. Then a steady

state cannot be attained so long as the temperatures are kept permanently at

Phil. Trans. 170, n. (1879), p. 727.
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different temperatures Ta, Tb, and there occurs a steady flow of gas through

the cycle formed by the chambers A, B and the pipe, a flow which is

suggestive of and analogous to that of a thermoelectric current.

172. Cohesion of Gases. Let us suppose that the chamber B in fig. 6

contains no gas, while chamber A is filled with gas kept at temperature T^.

There will be a flow of gas through the plug or orifice into the chamber B,

and the temperature of this gas as it arrives in the chamber B, say Tb , could

be measured by a thermometer placed in B.

Suppose first that the molecules of the gas had corresponded exactly to

the model we have imagined for them, and that they had been hard spheres,

like billiard balls of infinitesimal size, exerting no force on each other except

when actually in collision. Assume, as can easily be arranged, that no

conduction of heat takes place between the effluent molecules and the walls

of the orifice (or material of the plug) during their passage through it.

Then the molecules would retain their velocities during their passage

through the plug and, temperature being measured by the mean squares of

these velocities, the temperature Tb would be equal to the temperature Tj^.

Suppose next that the molecules of the gas had been held together

by strong forces of cohesion, so that each molecule was attracted by the

other molecules of the gas, or at least by those in its immediate proximity.

Then each molecule, while passing through the plug, would be under an

attraction towards the molecules in the chamber B, and this attraction v/ould

reduce its velocity, so that the average velocity of molecules arriving in B
would be less than the average velocity of molecules in A.

It is accordingly clear that an examination of the temperature of a gas after

transpiration or eff'usion will give important information as to the existence

or non-existence of forces of cohesion in a gas. Experiments to test this

question were devised and conducted by Gay-Lussac and Joule, and afterwards

a more delicate and crucial set of experiments was devised by Lord Kelvin,

and carried out by himself and Joule*. The earlier experiments had failed

to detect any temperature change in the gas, shewing that the forces of

cohesion in a gas were at least very small. The more elaborate experiments

of Joule and Kelvin established definitely the existence of a slight tem-

perature change, thus proving the existence of forces of cohesion in gases.

In an experiment in which air passed by transpiration from a pressure of

about four atmospheres to a pressure of one atmosphere, the change of

temperature observed was a fall of 0"9" C. In general it was found that for

air and many of the more permanent gases the cooling, although appreciable,

* The original papers will be found in the Phil. Trans, of the Royal Society of London

(143, p. 357, 144, p. 321, 150, p. 325 and 152, p. 579). See also Lord Kelvin's Collected Works,

I. p. 333.
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was very slight ; for carbon-dioxide, however, there was a much larger cooling,

while for hydrogen there was observed a very slight heating.

For an ideal or perfect gas there would, as we have seen, be no change in

temperature. Thus as regards forces of cohesion, air and the permanent

gases may be said to be nearly " perfect," while carbon-dioxide is very far

from "perfect," as is generally the case with this particular gas in all the

properties with which the Kinetic Theory is concerned. The behaviour of

hydrogen is anomalous, and led Regnault to describe this gas as " plus que

parfait."

Calculation of Pressure in an "Imperfect" Gas.

173. It is now clear that a real gas will differ from the ideal or " perfect
"

gas which was under consideration in §§ 158—161 in at least two respects.

The molecules which in the ideal gas were treated as spherical points must

have size and shape, and the forces of cohesion which were supposed to be

non-existent in the ideal gas will not be altogether negligible in the real gas.

Hence it comes about that equations (343) to (347), which gave the pressure

accurately in an ideal gas, will only give approximations when applied to a

real gas. We must accordingly examine in what way these equations need

to be corrected, so as to be made applicable to a real gas.

174. The best known correction of this type is that given by Van der

Waals, in his essay On the Continuity of the Liquid and Gaseous States*. We
shall first give an explanation of the corrections introduced by Van der Waals,

which, it will be found, lead to an equation expressing the deviations from

Boyle's Law to a first approximation only, and we shall afterwards attempt a

more general calculation of the pressure, which will not be restricted to small

deviations from Boyle's Law.

Van der Waals' Equation.

175. According to Van der Waals, equation (347),

pv^RNT (357),

must be corrected in two ways. The first correction is a correction to be

applied to the terra v to represent the finite size of the molecules, and the

* The original edition (1873) is in Dutch, published by Sigthoff, Leyden. There is a German
translation by Roth (1881, Barth, Leipzig) and this has been translated into English by Threlfall

and Adair (1890, Physical Memoirs published under the direction of the Physical Society, Taylor

and Francis, London). The references in the present book are to the English Translation.

Reference ought also to be made to the very complete and masterly treatment of the subject by

Eamerlingh Onnes and Keesom in the Encyclopndie der Mathetnatischen Wissemchaften (v. 10,

pp. 615—945). This is also reprinted as Vol. xi. of the Communications from the Physical

Laboratory of Leiden.
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second is a correction to be applied to the term p to represent the influence

upon the pressure of the forces of cohesion in the gas.

The argument of Van der Waals as to the first correction is as follows*.

In the volume v, let there be N molecules supposed still to be spherical, but

now of finite size, each being of diameter <r, and let us imagine the centre of

each surrounded by a sphere of radius cr, and therefore of volume ^tra^. In

considering possible positions for the centre of molecule A, we know that

it cannot lie within any of the iV— 1 spheres surrounding the N—\ other

molecules, so that the space available for the centre of A must not be taken

to be V but v-(iV-l)|7ro-^

This expression, it is true, requires correction on account of the possibility

of two or more of the N—\ spheres overlapping, but this correction will be

of a higher order of small quantities than that already made, and may

therefore be neglected. The expression also requires correction owing to

the impossibility of the centre of a sphere being within a distance ^o- of the

boundary. This correction requires us further to reduce v to the extent of

the volume of a layer of thickness \a taken round the boundary of the con-

taining vessel, but clearly this correction may be neglected if a vanishes in

comparison with the dimensions of the vessel. This condition is, of course,

entirely different from the condition that the sum of the volumes of the

molecules shall be small compared with the volume of the vessel. The former

condition is satisfied \i (tv~^ may be neglected, the latter is satisfied \i Nar^jv

can be neglected. Using the figures given in | 8, and taking the case of a

gas at atmospheric pressure in a vessel of 1 litre capacity, we find

o-v
~ * = 2 X 10-», Na^jv = 2-2 x 10"^

It is therefore rational to neglect the one correction, while taking the other

into account.

Hence in any element dv which is known not to be within a distance

I o- of the boundary, or to be included in any one of the spheres surrounding

each molecule, the probability of finding the centre of a molecule is

J-^^ (358).

If, however, the element is selected at random we must consider what is

the probability that the conditions postulated as to its not lying inside a

sphere, or within a distance ^ct- of the boundary, shall be satisfied.

The particular element of volume which is ultimately of importance for

the calculation of the pressure is one of which the distance from the boundary

is just greater than \<j. The second condition, therefore, is satisfied as a

* As regards method of presentation, I have followed Boltzmann (Gastheorie, ii. p. 7) more

closely than the orij.;inal work of Van der Waala.
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matter of course. To calculate the probability of the other condition being

satisfied, namely that the element dv shall not lie inside any one of the

iV — 1 spheres of radius <r, we notice that if it does lie in any one of these

spheres, then the centre of the sphere, being at a distance not less than \a

from the boundary, must be at least as far away from the boundary as the

element dv. In other words, if the sphere in question is divided into two

hemispheres by a plane parallel to the boundary, the element dv can only lie

in that hemisphere which is the nearer of the two to the boundary.

Hence the probability that dv, selected at random, shall lie inside any

particular sphere is |7ro^/v, so that the probability that it shall not lie in

any of the ^ — 1 spheres in question is, as far as the first order of small

quantities,

V

The product of this expression and expression (358) is

^ ,/,, (359).

V
^

This, then, is the probability that a molecule shall be found in the small /

element dv of which the distance from the boundary is \<t. As far as the

first order of small quantities the expression is the same as

Ndv 1

1 — ^ ~ ^"^^

or

V

Ndv
v-y

where h^lNira^ (360),

in which the distinction between N —\ and N is now ignored.

The effect of allowing for the finite size of the molecules in the calculation

of the pressure is therefore the same as that of reducing the volume from v to

v — h, and to allow for this we replace equation (357) by

p{v-b)==RNT (361).

The value of b, it is of interest to notice, is four times the aggregate sum

of the volumes of the molecules in the gas.

The use of the calculus of probabilities which is made in this argument

is probably open to criticism. We shall not stop to discuss the validity or

non-validity of the argument, as we shall subsequently arrive at exactly the

same result by a method which does not rely on the calculus of probabilities

for its justification (see § 218 below).
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176. The principle underlying Van der Waals' correction for cohesion is

as follows. It is supposed that when the " spheres of molecular action " of

two molecules do not intersect, the forces between the molecules, although

small, are not negligible. Accordingly we suppose that a molecule in the gas

is subjected to forces of cohesion acting between it and all the neighbouring

molecules. The resultant of these forces varies continually both in direction

and magnitude with the position of the molecules. When the molecule is

sufficiently far removed from the surface, all directions are equally likely for

this resultant, and hence the aggregate force, averaged over a sufficient

length of time, will be nil. When, however, the molecule is at or near the

surface this is no longer true. Let the force from each molecule be resolved

into tangential and normal components. Then all directions in the tangent

plane are equally likely for the tangential components, but the normal com-

ponent is in the majority of cases directed inwards. Averaged over a

sufficient length of time the resultant force will therefore be a normal force

always directed inwards.

We may suppose the radii of curvature of the surface to be so large

compared with molecular dimensions that the surface may at every point

be regarded as plane. In this case the conditions will be the same at every

point of the surface, and the normal force will depend only on the density of

the gas and the distance from the boundary of the point at which this force

is estimated.

Thus the average effect of the forces of cohesion can be represented by a

permanent field of force acting at and near the surface. It is this field of

force which may be regarded as giving rise to the phenomena of capillarity

and surface-tension in liquids. Now if we follow Van der Waals in supposing

that the actual forces of cohesion are adequately represented by this permanent

field of force, it will be easy to calculate the influence of this field of force

upon the pressure.

For the field of force can be regarded as exerting an inward pressure,

say j9i per unit area, upon the outermost layer of molecules of the gas.

Clearly this pressure must be supposed proportional jointly to the number of

molecules per unit area in this layer, and to the intensity of the normal

component of force. Each of these two factors is directly proportional to the

density of the gas, so that p^ will be proportional to the square of the density.

Let us suppose, then, that

Pi = cp\

where c is a constant depending only on the nature of the gas. The

molecules are now deflected upon reaching the boundary, not by impact

alone, but as the total result of their impact with the boundary and of the

action of the supposed field of force. In other words their change of



176-178] The Virial 141

momentum may be supposed to be. produced by a total pressure p+pi or

p + cp^, instead of by the simple pressure p.

Hence equation (361) must be further amended by writing it in the form

(p + cp')(v-b) = RNT (362),

or again, replacing p by Nm/v, and putting cN^w? = a,

[p + l){v-h) = RNT (363).

This is Van der Waals' equation connecting p, v and T. It will be

noticed that a and h are constants for the same mass of gas, but depend on

the amount of gas as well as on its nature, a being proportional to the square

and h to the first power of the amount of gas.

177. One factor which is overlooked in the argument by which this

equation is obtained, is that when cohesion forces exist, some molecules

which would have reached the boundary had there been no cohesion forces,

may never reach the boundary at all, being deflected by the cohesion forces

before their paths meet the boundary. Actually, then, these molecules

exert no pressure on the boundary, whereas Van der Waals' argument

supposed them to exert a negative pressure. As a consequence, equation

(363) admits of negative values iov p, whereas an examination of the physical

conditions shews that p is necessarily positive.

This objection, however, is of no weight so long as it is clearly recognised

that equation (363) is true only to the first order,- as regards deviations from

Boyle's Law.

Calculation of the Pressure from the Virial of Clausius.

178. Clausius attempted, in a way entirely different from that followed

by Van der Waals, to calculate the relation between pressure, volume and

temperature in an imperfect gas*.

If ^, T, Z are the components of force acting upon any molecule in a

gas, its motion will be governed by the equations

m^ = Z, etc (364).

With the help of these equations, we find for the kinetic energy of the

molecule

^m

= \m^^{a^^y' + z')-^{xX + yY + zZ).

* Phil. Mag. August, 1870.

d^z

^dt'
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Hence the total kinetic energy of translation in the gas is

^tmc' =l'mt^^ (x' + f + z') -^l{wX+yY+zZ),

where 2 denotes summation over all the molecules of the gas.

Averaged over all instants of time from ^ = to t = T, this equation

becomes

-- l*~\t{xX + yY-vzZ)dt (365).

In the steady motion of a gas, the quantities

ItmcHt, tm
-J-

(a;' + y' + z^-) and h^(xX + yY + zZ)

are approximately constant throughout the motion. Hence as we increase r

indefinitely in equation (365), the first and last terms will remain approxi-

mately constant, while the middle term tends to vanish. Taking t sufficiently

large, the equation reduces to

^%mc' = -lt{xX + yY + zZ) (366),

in which both sides, which are in any case constant except for the slight

departures from the steady state which occur in the motion of the gas, are

averaged over a time sufficient for them to be regarded as sensibly constant.

The mean value of —^%(xX+ yY+ zZ) was termed by Clausius the virial

of the system. We have therefore shewn that when a gas moves, undis-

turbed from its steady state, the kinetic energy of its motion is equal to

its virial.

179. The virial depends solely on the forces acting upon the molecules,

and not upon the motion of the molecules. In the case of a gas these forces

consist of the pressure exerted upon the gas by the walls of the containing

vessel, and the forces exerted by the molecules upon one another.

If dS is an element of the surface of the containing vessel, and I, m, n

the direction cosines of its outward normal, the pressure of the element dS
exerts upon the gas a force of which the components are —IpdS, —mpdS,
— npdS, so that the value of that part of XxX which is contributed by the

pressure will be 1 1 — IpxdS. The present treatment compels us to assume

that the pressure is the same at all points of the containing vessel. If we

make this assumption the quantity just obtained may be written —p jjlxdS.
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Hence the contribution of the pressure to the virial is, in all,

^p {Ix + my + nz) dS,

which, by Green's Theorem,

where v is the volume of the vessel.

We suppose that the force between two molecules at distance r is a

repulsive force (f>{r), a function of the distance r only. If the centres of

the molecules are at x, y, z, x', y\ z, and if X, Y, Z, X', Y' , Z' are the com-

ponents of the forces acting on them, then

X=<^(r)^, Z' = <^(r)^.

The contribution to XxX made by the force between these two particles

= xX + x'X'

r

The contribution to 2 {xX + 2/F-I- zZ^ is therefore

^[{x-xj^{y-yj^{z-zy\=r<^{r\ '

so that the part of the virial which arises from intermolecular forces is

where the summation extends over all pairs of molecules.

Equation (366) may now be replaced by

|Swc^ = \'pv — ^2Sr^ (r),

so that the pressure is given by

pv = ^Smc2 + i22r<^(r) (367).

180. Clerk Maxwell* makes an important observation on the subject of

this equation. By obliterating one or other of the terms on the right-hand

side, we notice that a pressure may be produced either wholly by molecular

motion or wholly by intermolecular force. The latter is a hypothesis on

which attempts have been made to account for the pressure in a gasf . If

this were the true account, then Boyle's Law that yv is constant could be

satisfied only by making 22r4> (?') constant, and therefore by taking ^ (r) = - .

* "The Dynamical Evidence of the Molecular Constitution of Bodies," Collected Works,

11. p. 422.

t Cf. Newton's Principia, ii. Prop. 23, and a note by Maxwell in Cavendish's Ekctrical

Researches (Note 6, Art. 97).
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In other words, two molecules would have to repel one another with a force

proportional to the inverse distance. This is, however, an impossible law for

a gas. It would make the action of the distant parts of the mass prepon-

[(KifVH^'^'
'

I

^^r**® over that of the contiguous parts, and would not give a pressure

which, for a given volume and temperature, would be constant as we passed

from one vessel to another, or even from one part to another of the surface

of the same vessel. We therefore conclude that the pressure of a gas cannot

be explained by assuming repulsive forces between the molecules; it must

arise, at any rate in part, from the motion of the molecules.

181. Returning to the general problem, it appears that if we could

calculate the term SSr0 (r) in equation (367) for any law of inter-

molecular force, we should have a complete knowledge of the corrections

to be applied to Boyle's Law. Unfortunately this is hardly possible even

in the simplest cases.

182. Since there are N molecules in the gas, the total number of

possible pairs will be ^N{N — 1). Let A, B he any two molecules forming

such a pair.

If the molecules were simply points exerting no forces on one another,

the chance of A and B being at a distance between r and r-\-dr from one

another would be

*^^^
(368)

V

the numerator being the volume of a shell of thickness dr surrounding

molecule A, and the denominator v being the whole space possible for the

centre of B. In forming this expression, we disregard the possibility of the

centre of A being within a distance r of the boundary of the containing

vessel, as we legitimately may if r is sufficiently small. Thus the number of

pairs of molecules having their centres within a distance r of one another

would, in this case, be

=^^r2(^r (369),
V

since it is obviously legitimate to neglect the difference between N —1
and N.

When, however, molecules at a distance r repel one another with a force

<l>
(r), it will be seen, upon examination of the results of § 117, that expression

(369) must be modified in two ways. The probability of finding two mole-

cules at a distance r apart is, by § 117, less than the probability of finding

the same two molecules at a distance oo apart (x here denoting any distance

great enough for the molecules to be out of range of each other's action) in

the ratio

-ih{'^i>{,r)dr
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And again the probability of finding two molecules at a distance oo apart is

greater than it would be if there were no intermolecular forces, because some

positions for the molecules, not at great distances apart, are less likely, on

account of the intermolecular forces, than they would otherwise be. The

former consideration requires us to multiply expression (369) by a factor

e-'''l>'^''' (370);

the latter requires us to modify the factor — in expression (369), which is

only accurate if all positions of the molecules are equally probable. Let us

for the moment suppose that this latter modification can be represented by

replacmg — by (1+/3)— .

Making these corrections to expression (369), the. number of pairs of

molecules at a distance r apart will be

1 ^-^r'e J*- '' dr,

and on multiplying by r^ (r) and integrating from to oo , we obtain

_,„,., 27riV2(l+/8) f* , . / X -'mr<i,(r)dr , /ohr-ix
S2r</)(r)= ^ ^1 r^<j)(r)e •''• dr (371).

183. In the simple case in which the molecules approximate closely to

elastic spheres of diameter a, the value of
<f)

(r) will be very small when r is

much greater than a, and the value of the exponential in equation (371) will

be very small when r is much less than a. Thus the right-hand member
of equation (371) derives all of its value from values of r which are very near

to a-. We may accordingly replace the factor r^ by o^ and take it outside the

integral. This makes the integration possible, and equation (371) reduces to

^Sr^^ry.'jl^^lp^^ (372),

or, if we again introduce b, defined by 6 = fiWo-^ (cf. equation (360)), this

becomes

S2r0(r) = |^(l+;S) (373).

184. If a is small, b/v will be a small quantity of the first order, so that

in an approximation which is carried only to the first order, we may be

content to neglect 0. Equation (367) then becomes

IV 2_.^^

or, introducing the temperature,

pv = RNT(l + ^) (374),

which agrees with equation (361) as far as first powers of b.

J. G. 10
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185. By evaluating the factor /3, and also taking account of the

possibility of more than two of the spheres of force surrounding the mole-

cules intersecting one another, Boltzmann* has carried the approximation to

second order terms. This corrected equation is found to be

p» = iJi^r|l +
^|(^J+...}

(375).

186. A more general case in which the right-hand member of equation

(371) admits of integration is that in which the repulsive force ^(r) varies

as some inverse power of the distance, say ^ (r) = /ir~*. We then have

T -1

^ (r) dr =
/•I r s - 1 r«-i

'

2hv V*-l/ V s-1.

It appears that this equation can be made to agree with (372) if we

regard the molecules as having a diameter a given by

"• = C~i>"^'^(l-.4l) (376),

SO that a must be regarded as depending on the temperature ; on replacing

1

2h by 1/RT, it appears that a is proportional to T »-i.

We may still introduce a quantity b defined by b = ^N7ra-^. If bg is

the value of this quantity at 0°C. {T= 273'1), the general value of b will be

(^ . 3

and equation (374) will be true, with this value for b.

187. If forces of cohesion of the kind specified in § 176 are also supposed

to act, these forces will have a contribution to make to the virial. To the

first order of small quantities, we may, in calculating 1Xr^(r), ignore the

effect of the forces of cohesion on the distribution of density of the gas.

The value of 22r^(r) is therefore obviously proportional simply to p^

per unit volume of the gas. Allowing for this addition to the virial,

equation (374) becomes

pv = RJSIT (l + -) - op^v,

* Vorlesungen iiher Gantheorie, ii. § 51.
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where c is the same as the c of § 176, and is independent of the temperature.

Or again this last equation may be written

agreeing with Van der Waals' equation (363) as far as the first order of small

quantities.
*

188. It is obvious that the calculation of the effect of the forces of

cohesion to a second approximation would be extremely tedious, and I am
not aware that it has ever been attempted. Indeed a comparison of the

general equation of the virial (equation (367)) with the general equation

giving the pressure (cf below, equation (420)) seems to suggest that the

virial is hardly suited to the calculation of pressures to any accuracy other

than that of a first approximation.

Physical Interpretation of the Equations.

189. The equation of Van der Waals undoubtedly provides the most

convenient basis for discussing the behaviour of a gas over those ranges

of pressure, density and temperature within which the equation may be

regarded as approximately true—that is to say, ranges within which the

deviation from Boyle's Law is small. We consider now some of the physical

properties of a gas, derived from the equation of Van der Waals. We shall

first examine the rates at which the pressure and volume change when the

gas is heated.

Cimnges of Constant Volume.

190. Imagine the volume of a gas satisfying Van der Waals' equation

(363) to be kept constant, and let us suppose the temperature first to be jTo

and afterwards 2\.

We have, iipn, pi are the corresponding pressures,

[po + ^^{v-b) = RNTo (378),

{p. + ^^{v-b) = RNT, (379)."

By subtraction we get

(p^-po)(v-b) = RN(T,-To) (380),

and dividing the members of this equation by the corresponding members of

equation (378),

Pi ~ Po ^0 _ 1 .

^ /QOl \

T -T ^ '^^^^ ....(^»1).
•* 1 -* Po Po'^

10—2
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From this it is clear that if Tq,p,^ refer to a fixed temperature the increase

in T is proportional to that in y. Hence a gas kept at constant volume may
be regarded as a thermometer giving readings on the thermodynamical scale

of temperature, the reading being proportional to p.

Let us now suppose that the relation between p^ and p^ is put in

the form •

p,=p,[\^K^{T,-T,)] (382),

then Kp is what is commonly called the " pressure-coefficient " of the gas in

question for the range of temperature Tq to T^.

Using relation (382), equation (381) reduces to

1
= 1 + .(383).

p^tfvTo

Thus Kp depends on the density, but not on the temperature, so that

for a given density of gas, the pressure-coefficient is independent of the

temperature.

This law naturally is only true within the limits in which Van der Waals'

equation is true. It was shewn to be very approximately true under ordinary

conditions by Regnault*, who found that gas thermometers filled with

different gases gave identical readings over a large range of temperature.

More recent and more exact experiments have shewn, as might be expected,

that the law is by no means absolutely exact or of universal validity. Full

tables of values of Xp will be found in the Recueil de constantes physiques \.

As a specimen may be given the following values, obtained by Chappuis

in 1903+

:

Values of k^.

Temperature
For nitrogen

(Po= 1001^9mm. atO°C.)
For COj

(Po= 998-5 mm. at 0°C.)

0° to 20°

0° to 40°

0° to 100°

»cp=^0036754

•0036752

•0036744

Kp= 0037335

•0037299

•0037262

Callendar| gives the following values for the pressure-coefficients (0° to

100° at initial pressure 1000 mm.) of three of the more permanent gases

:

Air -00367425,

Nitrogen '00367466,

Hydrogen '00366254.

* M^m. de I'Acad. xxi. p. 180.

t pp. 234—240. The pressure-coefficient Kp from range to $" is there denoted by /3* »

+ I.e. p. 234, § Phil. Mag. v. p. 92.
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For a perfect gas the value would of course be ^_ - - or 'OOSBGIT. It

will be noticed that the pressure-coefficient of hydrogen approximates very

nearly to that of a perfect gas, shewing that the value of a is extremely small

for hydrogen. For this reason the Comite Internationale des.poids et mesures

decided on the constant volume hydrogen thermometer as standard thermo-

meter. The small value which is known to exist for a is recognised in the

stipulation of the committee that the Volume at which the gas is used is to

be such that there is a pressure of 1000 mm. at 0° C.

Changes at Constant Pressure.

191. Consider next a gas in which the pressure is kept constant, while

the volume of the gas is changed by heating from Vq to v^. The two equations

analogous to (378) and (379) of § 190 are

{p + ^^(v,-b) = RNT, (384),

{p + ^.)
(v^ -b) = RNT, (385).

By subtraction, we obtain, neglecting the product ah which is small and

of the second order.

Piv. -v,) + a Q- - ]-) = RN{T, - To),

and on dividing by corresponding members of (384) and again neglecting

second order terms, this gives

b To(v,-Vo)H.^(i+l)_^ =^l!^ (386).

We can introduce a " volume-coefficient " k^ for the range of temperature

from To to Ti such that

v, = Vo{l + K,(T,-To)},

so that «„ is given by

'ft; = —7^7 7p\ (387).

We then find from (386),

,„ = |i + ^(Ih.1)_AU (388).
( pVo \Vo Vj/ Vo) To

This is more complicated than the formula for the pressure-coefficient

(383) in that it depends both on the volume and the pressure.

The following table, similar to that given on the opposite page, will shew

some values for k„.
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Values of k^.

Temperature
For nitrogen

(p = 1001-9 mm.)
For COj

(i)= 998-5 mm.)
For CO2

(i)= 517-9mm.)

0° to 20°

0° to 40°

0° to 100°

K„= -0036770

-0036750

-0036732

K„= -0037603

-0037536

•0037410

K„= -0037128

-0037100

•0037073

Other values will be found in the Recueil de constantes physiques, from

which the above values are taken.

Evaluation of a and b.

192. From an experimental evaluation of the "pressure-coefficient" /Cp

given by equation (383), the quantity a can be obtained at once, and when

a is known, the value of b can be obtained from the value of the volume-

coefficient.

For instance, using Callendar's value for Kp for air, we have (equation

(383)), with 7^0 = 273-10,

a \ 1
1 +

PovV To
= -00867425,

while ^ = -0036617.

The value of Kp refers to a pressure of 1000 mm. of mercury, or 1-3158 atmo-

spheres. At this pressure, therefore

— = p^To X -0000125 = "00453 atmospheres pressure.

Thus for air at 1*3158 atmospheres pressure at the boundary, the forces of

cohesion result in an apparent diminution of pressure of -00453 atmospheres,

or about one-threehundredth of the whole, so that the pressure in the

interior of the gas is 1-3203 atmospheres. This will give an idea of the

magnitude of the forces of cohesion.

Let us now suppose that we are dealing with a special mass of gas, say

one for which the volume is unity at a pressure of 1 atmosphere. At a

pressure of 1000 mm. of mercury the value of v is '7599, and this leads

to the value

a = 2649-5 in c.G.s. units = -00260 atmospheres,

for this particular mass of gas.

When a has been determined in this way, we can determine b from the

observed values of «^. A number of determinations of b will be found in

Van der Waals' essay.
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193. The determination of h is of special interest, because from it we

can calculate directly the value of a, the diameter of the molecule or of its

sphere of molecular action.

The vfilues for 6 which Van der Waals deduces from the discussion of a

great number of experiments by Regnault are as follows :

Air -0026,

Carbon-dioxide '0030,

Hydrogen '00069.

These values refer to a mass of gas which occupies unit volume at a

pressure of 1000 mm. of mercury.

' Unfortunately the value of h appears in the calculations as the difference

of two larger quantities. The accuracy of the results, therefore, is not great.

For instance in the case of hydrogen, Regnault's experiments lead to different

values of h of which the extreme values are '0005 and "0008. The number

•00069 is, however, the mean of a very great number of experiments, so that

the probable error is nothing like so great as the difference between the

mean and either of the extremes. The agreement amongst themselves of the

experiments in the case of the other two gases is much better. For instance,

taking the value h — "0030 for carbon-dioxide, Van der Waals calculates for

ax 10* from Regnault's experiments the values 127, 114, 115,-107, 120, 113,

116, 111, 116. According to Van der Waals the first number is, from the

experimental conditions, likely to be the least trustworthy : the remainder, as

will be seen, agree to within a few per cent.

There are other ways of determining 6, besides observations on the pressure

and volume coefficients. Of these the most important is probably by measure-

ment of the Joule-Thomson effect. From calculations by Rose-Innes*,

Callendari' deduces the following values for 6

:

Air 1-62,

Nitrogen 2-03,

Hydrogen 10-73.

These values are in cubic centimetres referred to unit mass of gas. The

corresponding values referred to a cubic centimetre of gas are found to be

Air 00209,

Nitrogen -0025.5,

Hydrogen -00096.

For helium, Kamerlingh OnnesJ has determined the value for h :

Helium -000432.

* Phil. Mag. n. p. 130.

t Phil. Mag. v. p. 48, or Proc. Phys. Soc. xviii. p. 282.

X Communicationsfrom the Physical Laboratory of Leiden, 102 a, p. 8.
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Values of Molecular radius ^cr.

194. The value of b is, as in equation (360), equal to ^Ntto-^, and since

the values of b have been determined for a cubic cm. of gas at normal

pressure, we may take iV=2 75xlO^*, and so determine o- immediately.

It will be noticed that a- is proportional to the cube-root of b, so that the

differences in a are only small compared with the somewhat large differences

in the values of^- from which they are derived. For instance, two extreme

determinations of b for hydrogen are b = "00069 (Van der Waals) and

b = -00096 (Callendar), but the corresponding values for ^o- are 1"04 x 10~8

and 1-26 x lO-^.

The values of ^a deduced from the best values of b are as follows:

Gas
Value of b

(1 c.c. of gas)
Observer Valueof Jo-

Hydrogen

Helium

Nitrogen

Air

Carbon-dioxide ...

-00096

-0004.32

•00255

•00209

-00228

Rose-Innes

Kamerlingh Onnes

Rose-Innes

Rose-Innes

Van der Waals

1-26x10-8

0-98x10-8

1-77x10-8

1-65x10-8

1-70x10-8

IsothermALs.

195. One of the most satisfactory ways of representing the relation

between the pressure, volume and temperature of a gas, is by drawing
" isothermals " or graphs shewing the relation between pressure and volume

when the temperature is kept constant. There will of course be one iso-

thermal coiTesponding to every possible temperature, and if all the isothermals

are imagined drawn on a diagram in which the ordinates and abscissae represent

pressure and volume respectively, we shall have a complete representation of

the relation in question.

Isothermals of an Ideal Gas.

196. For an ideal or perfect gas the relation between pressure, volume

and temperature is expressed by the equation

pv^^RNT (389).

To represent this relation by means of isothermals, we take p and v as

rectangular axes and draw the various curves obtained by assigning different

constant values to T in equation (389). The curves all have equations of the

form pv = const., and so are a system of rectangular hyperbolas, lying as in

fig. 7. These are the isothennals of an ideal gas.



194-197] Isothei^mals 153

Isothermals of a Real Gas.

197. Let us consider what isothermals are given by Van der Waals'

equation

(i>+^)(^-&)=^^^ (390),

bearing in mind, however, that this equation must be expected to give the

true relation between p, v and T only within a range in which the deviations

from the ideal relation (389) are small.

It will be noticed that if the system of curves shewn in fig. 7 are pushed

bodily through a distance b parallel to the axis of v, they will give the

system of isothermals represented by the equation

p(v-b) = RNT (391),

P

Fig. 7.

and on further drawing down every ordinate through a distance — parallel to

the axis of p, we obtain the system of isothermals represented by equa-

tion (390).

These isothermals are shewn in fig. 8, in which the thick line AB ia the

curve p =—r , while the line BCD is v = b.

From equation (390) it appears that the points at which the isothermals
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are parallel to the axis of v—i.e. the points on the isothermals at which

dp

dv
= —all lie on the curve

a(v— 26)
.(392).

This curve cuts the axis of v at v = 26, so that there is an isothermal which

touches the axis of v at v = 26 ; this is found to be the isothermal

RNT=lalh.

Fig. 8.

In equation (392), the maximum value possible for^ is found to be given

by t;=36, P— ^Wii> ^^ that at the point of which these are the coordinates

(the point P in fig. 8) the isothermal through the point must have two
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coincident points at which -^ = 0, and therefore has a point of inflexion with

a horizontal tangent. This particular isothermal is given by

RNT^^"^ (393).

It is clear that all isothermals for values of T greater than that given by

equation (393) can have no points at which -j- = 0, and so are everywhere

convex to the axis of v.

198. The isothermals of a real gas will be similar to those shewn in

fig. 8 so long as the gas does not differ too much from an ideal gas. The

isothermals in fig. 8 will accordingly represent the isothermals of a real gas

with accuracy in the regions far removed fi-om both axes, but not near to

these axes. We must inquire what alterations must be made in these curves

in order to represent the isothermals of a real gas.

The isothermal T=0 is represented in fig. 8 by the broken line made up

of the curve AB and the vertical line BCD. The true isothermal is however

known with accuracy. As a gas at temperature T= is compressed, the

pressure remains zero until the molecules are actually in contact, after which

the pressure rises to any extent, while the volume retains the s^-me value Vq,

this being the smallest volume which can be occupied by the molecules.

Now Vq, being the smallest volume into which N spheres each of diameter a

can be compressed, is easily found to be given by

(T

while from equation (360),

6 = |i^7r(7'=2-96wo (394).

Thus the isothermal T=0, instead of being the curve ABCD in fig. 8,

must consist of the two lines vE, EF. If we imagine the curves in fig. 8

so distorted that the point B is made to coincide with the point E, and the

curve ABCD with the lines vEF, we shall obtain an idea of the run of the

isothermals of a real gas. The curves may be imagined to lie somewhat as

in fig. 9, in which both the vertical and horizontal scales have been largely

increased over those employed in fig. 8, but the vertical scale has been

increased much more than the horizontal.

199. In this figure the isothermal having a point of inflection with a hori-

zontal tangent is represented by the line P^PP^, the point of inflection being

P. This isothermal corresponds to the maximum value of T for which it is

possible for -j- to vanish.
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For any isothermal corresponding to a smaller value of T, say SQRN in

fig. 9, there will be two points Q, R at which dpjdv vanishes, and there will

accordingly be a range QXR over which dp/dv will be negative. Any point,

say X, within this range, will represent a state such that a decrease in volume,

keeping the temperature constant, is accompanied by a decrease in pressure.

The state represented by the point X is accordingly a collapsible or unstable

state, any slight decrease in volume producing at once a tendency to a further

decrease in the form of an unbalanced external pressure. All points inside

the curve RPQ (the locus of points at which dp/dv = 0) will represent unstable

states.

On the isothermal through X there must clearly be two other points

F, Z which represent states having the same temperature and pressure as X.

At each of these two points dp/dv is positive, so that the two states in

question are both stable, and so ought both to be known to observation.

The point Z obviously represents the gaseous state; the point Y corresponding

to lesser volume is believed to represent the liquid state.

With this interpretation it is at once clear that if the gas is kept at a

temperature above that of the isothermal P^PP^, no amount of compression

can force the substance into the liquid state. Thus the temperature of the

isothermal P^PP^ must be the "critical temperature" of the substance.

So long as the temperature is kept above the critical temperature, no

pressure, however great, can liquefy the substance.

Continuity of the liquid and gaseous states.

200. It is usual to speak of a gas, when below the critical temperature,

as a vapour. We therefore see that the line PP^ in fig. 9 is the line of

demarcation between the gaseous and vapour states, and that PPi is the

line of demarcation between the gaseous and liquid states. We must now
examine the demarcation between the liquid and vapour states, which is at

present represented by the unstable region in which dp/dv is positive. If U
is any point in this region it is clear from physical considerations that there

must be some stable state in which the pressure and volume are those of the

point U. What is this state ?

Through U draw a line parallel to the axis of v. Let this cut any

isothermal in the points X, Y, Z, the two latter representing stable states

—

liquid and vapour respectively. These states have the same pressure, so that

a quantity of vapour in the state Z can rest in equilibrium with a quantity

of liquid in state Y. By choosing these quantities in a suitable ratio, the

volume of the whole will be that represented by the point U. Here, then,

we have an interpretation of the physical meaning of the point U. As the

vapour is compressed at the temperature of the isothermal SZQXRY, the

substance remains a vapour until the point Z is reached. At this point
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condensation sets in, and as the condensation proceeds the representative

point moves along the straight line ZXUY until, by the time the point Y is

reached, the v^^hole of the matter is in the liquid state. After this the

substance, wholly in the liquid state, moves through the series of changes

represented by the path YQ'N.

It will be seen that there is an element of arbitrariness in this, for

instead of describing the path SZUYN the substance might equally well be

v-.v„

Fig. 9.

supposed to describe the path SR'RYN, keeping at the same temperature

throughout ; or any other path composed of two stable branches of an iso-

thermal joined by a line of constant pressure. In other words there is no

unique relation between the pressure and temperature of evaporation or

condensation. This is however in accordance with the known properties of

matter, the range ZQ in fig. 9 representing super-cooled vapour, and the range

YR representing super-heated liquid.

201. When, however, there are no complications arising from surface-

tensions, particles of dust, or other extraneous agencies, there must be

a definite boiling point corresponding to each pressure, so that the path of

the substance fi:om one state to another, given the same external conditions,

must be quite definite. So far we have not arrived at any such definiteness.



158 Physical Properties : Temperature, Pressure, etc. [ch. vi

Maxwell* and Clausiusf have both attempted to obtain definite paths for

a substance changing at a constant temperature. The conclusion they arrive

at is that the line 8ZXYN in fig. 9 will represent the actual isothermal

path from 8 to N, if the line ZXY is so chosen that the areas ZQX, XRY
are equal. The argument by which this conclusion is justified is as follows.

Imagine the substance starting from Z, and caused to pass through the cycle

V--Vo

Fig. 10.

of changes represented in fig. 9 by the path ZQXRYXZ, the first part of

the path ZQXRY being along the curved isothermal, and the second part

YXZ along the straight line. Since this is a closed cycle of changes, it

follows from the second law of thermodynamics that

'dQ

/f = o,

where dQ is the total heat supplied to the substance in any small part of its

path in fig. 9, and the integral is taken round the whole closed path repre-

senting the cycle. Since the temperature is constant throughout the motion,

this equation becomes / dQ = 0, so that the integral work done on the gas

• Nature, ii. 1876 ; Collected Works, ii. p. 425.

t Wied. Ann. ix. p. 337 (1880).
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throughout the cycle is nil. This work is, however, equal to \pdv and there-

fore to the area, measured algebraically, of the curve in fig. 9 which represents

the cycle. Hence this area must vanish, which is the result already stated.

Objections can be, and have been, urged against this argument, but to

discuss the question any further would carry us too far into the domain of

thermod3niamics.

202. The figure which is obtained from fig. 9, upon replacing the

curved parts of isothermals such as ZQXRY by the straight line ZXY, is

represented in fig. 10. This figure then ought to represent the main features

of the observed systems of isothermals of actual substances. There can of

course be no attempt at anything of the nature of quantitative agreement.

110-

100-

\

90- ^\
80- |\\
70-

I \V\. 48-t

60-

N. x\35 5\ \32-6
\^ ^31-1

50- \^ '^21-5

\l3l

Fig. 11.

203. CoTTvparison with Experiment. In fig. 11 the curves are the

isothermals of carbon-dioxide as found experimentally by Andrews*. The
figures on the left-hand denote pressure measured in atmospheres, the

isothermals only being shewn for pressures above 47 atmospheres. The

• Phil. Trans. 159, p.;675 (1869) and 167, p. 421 (1876).
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figures on the right-hand denote the temperatures centigrade of the corre-

sponding isothermals.

The isothermal corresponding to the temperature 31*1° is of great interest,

as being very near to the critical isothermal, the value of the critical tem-

perature being given by Andrews* as 30"92°. On this isothermal, as on all

those above it, the substance remains gaseous, no matter how great the

pressure.

On the next lower isothermal, corresponding to temperature 21 "5° C, we

notice a horizontal range at a pressure of about 60 atmospheres. As the

representative point moves over this range, boiling or condensation is taking

place. Thus at a pressure of about 60 atmospheres the boiling point of

carbon-dioxide is about 21*5° C. The ratio of volumes in the liquid and

vapour states is equal to the ratio of the two values of v at the extremities of

the horizontal range—a ratio of about one to three.

The lowest isothermal of all corresponds to a temperature of 131° C.

Here the inequality between the volumes of the liquid and the gas is greater

than before. In fact an examination of the general theoretical diagram

given in fig. 10 shews that as the temperature decreases the inequality

must become more and more marked, so that in all substances the distinction

between the liquid and gaseous states must become continually more pro-

nounced as we recede from the critical temperature.

The Critical Point.

204. The critical point, as has been seen, is the point at which the

isothermal passing through it has a point of inflexion with a horizontal

tangent. It is therefore determined by the equations

l=«. ^^=« («««)•

If we suppose the pressure determined by Van der Waals' equation

a RNT ,o
^ V^ V —

(n these equations become

2a RNT
v" ~(v-by'

6a _ 2RNT
v*~(v-by'

* Keesom (1903) gives 30'98^, Amagat's experimentg lead to the value 31'35°.
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Solving these we obtain for the values of the critical volume, temperature

and pressure, Vc, Tg and pc,

Ve=^Sb (397),

i2AX = ^^ (398),

^-2?P ^'''^'

these equations of course giving the coordinates of the point P in fig. 8 (p. 154).

By combination of these equations we find as the value of pv at the

critical point

p,v, = %RNT, (400),

shewing that at this point the deviation from an ideal gas is represented by

a factor |.

205. It is now clear that the critical point is not within the region

within which Van der Waals' equation can be regarded as a good approxima-

tion, and consequently equations (397) to (399) must not be expected to

determine the critical point with any accuracy. In point of fact it is found*

that for most gases the critical volume Vc is nearer to 26 than to 36, while

the value of RNT^ is generally about 3"7jOcVc instead of being eijual to

I'QQpcVc, as predicted by equation (400). These figures, howe\'^r, indicate

that equations (397) to (399) may determine the critical point to within an

error of 20 or 30 per cent., and conversely the equations may be used to

determine the values of a, b with the same degree of accuracy when the

critical point is known. The following table gives an example of values of a

and b calculated in this way

:

Substance T, obs. p, obs. a calculated b calculated b (p. 152)

Hydrogen

Helium

Nitrogen

Air

Carbon-dioxide ...

-234-5° C.

- 268° C.

- 146° C.

-140°C.

31-1° C.

20 aim.

2-3 „

33 „

39 „

73 „

•00042

-0000615

-00259

-00257

•00717

-00088

-000995

•00165

•00156

-00191

-00096

-000432

•00255

•00209

-00228

From what has been said, it will be seen that a protest may legitimately

be made against the practice of calculating a and b from the observed values

of the critical constants, and then assuming these values of a and b to

be accurate to two or even three significant figures.

* See below, § 227; also Berthelot, Bull, de la Soc. Franc,, de Physique, 167 (1901), p. 4;

S. Young, Phil. Mag. 1892, p. 503, 1894, p. 1 ; and the Eecueil de Constantes Physiques, table 83,

p. 243.

J. G. 11
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Reduced Equation of State.

206. Let us introduce quantities i, :p and t) defined by

t=|' "=! ^=1 <*«i)-

so that f denotes the ratio of the temperature of any substance to its critical

temperature, and so on. The quantities (, p, t) are called the reduced tem-

perature, pressure and volume respectively.

If we suppose Van der Waals' equation to hold, we have (cf. equations

(397) to (399))

p^m^' " = ^^^' ^^^^=m^ (^^2>'

and Van der Waals' equation reduces to

[^4){--M' («^^-

It will be noticed that this equation is the same for all gases, for the

quantities a, b, which vary from one gas to another, have entirely disappeared.

An equation, such as that of Van der Waals, which aims at expressing the

relation between pressure, volume and temperature in a gas, is called an

equation of state*, or sometimes a characteristic equation or gas-equation.

Equation (403) may be called the " reduced " equation of state of Van der

Waals, and is the same for all gases.

Corresponding States.

207. Assuming for the moment that Van der Waals' equation might be

regarded as absolutely true for all gases, it appears from equation (403) that

when any two of the quantities t, p, tJ are given, the third also is given, and

is the same for all gases. In other words, there is a relation of the form

p=/(f,») (404),

in which the coefficients in / are independent of the nature of the gas.

208. Again, suppose that the equation of state of a gas is more general

than that of Van der Waals, but depends only on two quantities which

determine the particular structure of the gas in question—say for instance

the same two as in the equation of Van der Waals, representing the size of

the molecules and the cohesion-factor. If a and b are these two constants,

it is clear that the equation of state can be expressed in the form

t> P=f{RT, ^,a,6) (405).

• ZuBtandsgleichung, Equation caract^ristique.
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In this we can replace the constants by new ones, and a consideration of

physical dimensions will shew that it must be possible to do this in such a

way that the equation assumes the form

K^, t) <-«)'

in which po, Vq, Tq are constants

—

i.e. functions of a, b, N and R—whose

physical dimensions are those of a pressure, a volume and a temperature

respectively.

The critical point will be given by

and the solutions of these equations must be of the form

and, from equation (406), it now follows that there must also be the equation

p^ = Cspo, in which Ci, C2, c^ are pure numerical constants. If now the

substitution (401) is made, it appears that equation (406) can be put in the

form

P=f{t,ty) (407),

in which the coefficients in / are independent of the nature of the gas.

This is the result which has been already found true for the special equation

of Van der Waals (cf. equation (404)).

209. Assuming that the gas-equation can be expressed in the form (407),

two gases which have the same values of f, p and t) are said to be in " corre-

sponding " states. Clearly for two gases to be in corresponding states it is

sufficient for any two of the three quantities t, p and V to be the same

for both.

210. The Law of Corresponding States. It is sometimes asserted as a

natural law, that when two of the quantities (, p and V are the same for two

gases, then the third quantity will also be the same, and this supposed law

is called the "Law of Corresponding States." The condition for the truth

of the law is, as has been seen, that the reduced equation of state can be

put in the form of equation (407), and this in turn demands that the nature

of the gas shall be specified by only two physical constants, as for instance

the a and b of Van der Waals. Evidence as to the extent to which the law

is true will appear later. There is of course no question that the law is true

as a first approximation, because Van der Waals' equation is true as a first

approximation.

Obviously the law of corresponding states asserts that by contraction or

expansion of the scales on which p and v are measured, the isothermals of all

gases can be made exactly the same.

11—2
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Other Equations of State.

The Empirical Equation of State of Kamerlingh Onnes.

211. Following Kamerlingh Onnes, let us suppose that for any gas K is

given by

K = RNT,
PcVc

.(408).

From a consideration of physical dimensions, it is seen that K must be a

pure number. According to Van der Waals' equation, K is equal to 2*66,

although the value of K for actual gases is about 3'7 (cf. § 227, below).

Let us further put

t)^ = J.-/i (409).

With this notation. Van der Waals' equation (403) reduces to

27

(^ + 6^^) (^--8) = ^-- ^^1^>-

which can also be written in the form

f 27
PVk

1 -

= f 1 +

1

1

64>Vk

271
64 t

+
1

+ + .(411).
t)jrV« t)4ty 64d/ 512t)^»

It has been found by innumerable observers that an equation of this

type is not adequate to represent the various states of a gas, and so

Kamerlingh Onnes has assumed the more general empirical form

pVK=t\l +^ + .-^^. .(412),

.(413).

where "^, ^, P are themselves series of the form

This expansion contains no fewer than 25 adjustable coefficients. If

Van der Waals' Law were true, all of these ought to vanish except bj, Cj,

^1, Ci, fi, and bg, of which the values ought to be given by the following

scheme

:

1 2

10-^ b 125-000 -416-666

10* c 156-25 0-0

10^6 195-3125 0-0

107 c ? 0-0

108 f ? 0-0
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in which the values for e, , fj have not been inserted, since these values cannot

be determined by comparison with (411) owing to the omission of terms in

t)-», t)-^ etc. in (412).

If Van der Waals' Law were not true, but the general law of corresponding

states were true, the coefficients in the expansions (409), (410) ought to be

the same for all gases.

212. Kamerlingh Onnes* finds that a general equation of state of type

(407) can be obtained which expresses with fair accuracy the observations of

Araagat on hydrogen, oxygen, nitrogen and C4H10O, also of Ramsay and

Young on C4H10O and of Young on isopentane (CgHja). The coefficients in

this equation are found to be those given in the following table

:

1 2 3 4 5

103 b 117-796 - 228-038 -172-891 -72-765 -3172

104 c 135-580 -135-788 295-908 160-949 51 109

lO^b 66-023 - 19-968 -137-157 55-851 -27-122

107 e -179-991 648-583 -490-683 97-940 4-582

109 f 142-348 - 547-249 508-536 -127-736 12-210

It is at once apparent, from a comparison of the sets of coefficients in these

two tables, that Van der Waals' equation fails to a very great extent to

represent the true equation of state : in fact, as has been already seen, its

accuracy is limited to the range of states in which the gas behaves nearly like

an ideal gas, or in other words to large values of i and t).

Kamerlingh Onnes points outf that Van der Waals' Law must be expected

to agree better with observation when applied to a gas in which the molecular

conditions conform more closely to those contemplated by Van der Waals. He
accordingly examines the isothermals of helium, and finds that they can be

represented very fairly between 100° C. and — 217° C. by the equation

pv = NRT H h —

,

which is simply Van der Waals' equation adjusted by the inclusion of

Boltzmann's second-order correction. It must however be noticed that

the value of Te for helium is very low, about 5-3° abs., so that the range

of temperatures studied by Prof. Kamerlingh Onnes is about from t = 10 to

t = 70, and for these high values of f it is natural that Van der Waals'

equation should in any case give a good approximation.

* Encyc. d. Math. Wissensdiaften, v. 10, p. 729, or Communicatiom from the Phys. Laboratory

of Leiden, xi. Supplement 23, p. 115.

+ Communicatiom from the Phys. Laboratory of Leiden, 102 a (1907).
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The Equation of State of Clausius.

213. Various attempts have been made to improve Van der Waals'

equation by the introduction of a few more adjustable constants, which can

be so chosen as to make the equation agree more closely with experiment.

The best known of these equations is that of Clausius, namely

P + r(i^')(»-*>=^^^ («">

If in this we put c = 0, the equation becomes similar to that of Van der

Waals, except that the a of Van der Waals' equation is replaced by a'/T; in

other words, instead of a being constant, it is supposed to vary inversely as

the temperature. For some gases the equation of Clausius, reduced in this

way, is found to fit the observations better than the equation of Van der Waals.

If, however, c is not put equal to zero in (414) but is treated as an adjust-

able constant and selected to fit the observations, there is found to be no

tendency for c to vanish. The following table shews the values of a, h and c

which are found by Sarrau * to give the best approximation to the observations

of Araagat

:

Gas a' b c cjb

Nitrogen

Oxygen

Ethylene

0-4464

0-5475

2-688

2-092

-001359

•000890

-000967

-000866

-000263

-000686

•001919

-000949

0-19

0-75

1-98

1-10Carbon-dioxide ...

214. Law of Corresponding States. We have already seen that, if Van der

Waals' equation were true, the law of corresponding states would follow as a

necessary consequence, because in Van der Waals' Law there are only two

constants, a and h, which respectively provide the scales on which the pressure

and volume can be measured in reduced coordinates.

On the other hand in the equation of Clausius (equation (414)) there are

three separate constants, a, b and c, and of these two, namely b and c, provide

different scales on which the volume can be measured: these two scales

only become identical if b and c stand in a constant ratio to one another.

Thus if the law of corresponding states were true, the ratio cjb would be the

same for all gases. The last column of the above table shews, however, that

there is no approximation to constancy in the values of c/b.

215. Clausius originally devised formula (414) in an effort to fit a

formula to the observations of Andrews on carbon-dioxide. It is found

* Comptes Eendus, 114 (1882), pp. 639, 718, 845.
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that this formula can be made to agree well with carbonic acid observations

at high densities, but that at low densities the formula of Van der Waals, as

might be expected, fits the observations better*.

It was next found that equation (414), although partially successful in the

case of carbon-dioxide, was not equally successful with other gases, and

Clausius suggested the more general form

P + (y^ - a"'T) ^^} (v-h) = RNT (415),

which now contains five adjustable constants. For carbon-dioxide, it is found

that w = 2 and a" = 0, so that the equation reduces to (414), but for other

gases it is not found that n and a'" approximate to these values. For

instance Clausius findsf that for ether n = l*192, for water-vapour w = 1*24,

while to agree with observations on alcohol, n itself must be regarded as

a function of the temperature and pressure, having values which vary from

1-087 at 0° C. to 0-184 at 240° C.

It is obvious, then, that there is no finality in any of these formulae, and

it is possible to go on extending them indefinitely without arriving at a fully

satisfactory formula, as might indeed be anticipated from the circumstance

that they are purely empirical, and not founded on any satisfactory theoretical

basis.

General Calculation of Pressure.

216. We may now attempt to examine what type of formula is predicted

by the Kinetic Theory for the general

relation between pressure, volume and

temperature, although it will be found

that the formula obtained is of so com-

plicated a nature that it is not possible

to progress very far.

We shall modify the calculation of

§ 161, so as to apply when no assumption

is- made as to the size or structure of

the molecules. In this calculation, we

estimated the number of molecules having >^^ ^g
velocities within given limits dudvdw,

which impinged on the element dS in

time dt, and this was shewn to be equal Fio 12.

to the number of such molecules which

at the beginning of the interval dt were to be found within a certain element

of volume udSdt (cf. fig. 12).

* See a diagram by Berthelot, Arch. N4erl. v. (1900), p. 420, reproduced in the Recueil de

Cnmtantn Physiques (p. 246). t Cf. Preston, Theory of Heat, p. 511.

X
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The molecules of the more general type now to be considered must be sup-

posed to have a number of coordinates fj, ^2j ••• specifying their orientation

and internal state in addition to their coordinates of position and velocity of

the centre of gravity u, v, w, x, y, z. All the molecules in the vessel, whether

chemically similar or not, may be divided into classes a, /3, 7, . . . such that all

the molecules in any one class are all chemically the same, have their co-

ordinates ^1, ^2> ••• lying within a specified range d^^, d^^, ••-, and have their

components of velocity u, v, w lying within a specified range dudvdw. Thus

all the molecules in any one class form a shower of parallel moving molecules,

which throughout their motion remain all similar to one another as regards

dynamical specification, except in so far as they are affected by collisions.

For any particular class of molecule, say a, let q denote the perpendicular

distance, at the beginning" of the in-

terval dt, from the centre of gravity

of the molecule on to that tangent

plane to the surface of the molecule

which is perpendicular to the axis

of a; and so is parallel to dS. The

corresponding perpendicular distance

at the end of the interval dt will be

The molecules of class a which

will impinge on dS during an in-

terval dt are those of which the

centres of gravity at the beginning

of this interval lie within a certain cylindrical volume, as in fig. 13. The
cross-section of this area is dS and it is bounded by planes at distances q

and q + udt + ~~ dt
dt

accordingly

from dS. The volume of this cylindrical element is

u +
dq

dt
dSdt,

and if zv is the density of molecules of class a in this particular element

of volume, the number of impacts on dS within the interval dt will be

dq""
u +

dt
dSdt .(416).

The impulses exerted on the area dS in time dt can be divided into two

parts, say Wj and -^2, such that -btj is the sum of the impulses exerted by the

molecules up to the instant at which their centre of gravity is reduced to

rest normally to the boundary {i.e. the instant at which u = 0), and BTg is the

sum of the remaining parts of the impulses.
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Each of the impacts enumerated in expression (416) brings a contribution

mu to -sTi, so that

a, = %mvJu-{-^\ud8dt (417),

where the summation is over all classes of molecules a, /3, 7, ... for which u

is positive.

The value of Wg can be calculated in a similar fashion, and is found to be

given by an expression exactly similar to (417) except that the summation is

now over all classes of molecules for which u is negative. Perhaps this is

most easily seen by imagining the whole motion reversed : the value of CTi in

the reversed motion is of course identical with the value of -512 in the direct

motion, and vice versa.

By addition of fehe values which have been obtained for nr^ and -ctj,

we find

-BTi + -572 = tmva (^ + 7^) udSdt (418),

in which the summation extends over all classes of molecules.

It is readily seen that on carrying out the summation over all classes of

do
molecules, the terms in -^ must vanish. Thus, since tsTi + a^=^pd§dt, we have

p= Smi/a^^ (419),

analogous to our previous equation (342). The summation covers all values

of u, so that the equation may be expressed in the equivalent forms

p=^{tv.)RT =^ (420).

217. Although this general result has proved to be expressible in a very

simple form, it must be remembered that the meaning of the symbol v^ is one

of great complexity. Consequently, it is only in very simple cases that the

evaluation oip can be carried out to the full.

218. We may consider the form assumed by the problem, when the

molecules are supposed to be all spherical, and of a definite diameter a
which may not be treated as very small. In this case q becomes identical

with \a-, so that -^ disappears. The classes a, /?, 7, ... of molecules are now,

as before in § 161, differentiated only by the different values for the velocity

components u, v, w, and Si/a may be replaced by Vb, where Vb is the density of

centres of molecules in an element of volume at a distance just greater than

^a from the boundary.
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In the notation of § 67 (equation (124)), the " effective molecular density
"

i/i at any point was found to be given by the equation

v,^N .(421),
I {a, b, c, d ...)

expressing the value of Vi at the point Xa, ya, ^a- Here I (a, b, c, d ...) is the

element of volume integrated throughout the whole of the generalised space

except those parts excluded by § 36.

The element of volume integrated throughout the whole of the generalised

space is, as in § 65, equal to H-^, where 12 is the volume of the vessel in which

the gas is supposed to be contained. The excluded parts are of two types.

We have in the first place to exclude the region given by equations (60)

in which
<f) (o^a, ya, Za)<\o: This exclusion can be represented fully by

limiting the size of our vessel, and supposing it to hav§ a layer of thickness

^(T removed from the interior. Let the remaining volume be supposed to

be fl', then the corrected value of the integral I {a, b, c ...) will obviously

be n'^.

Secondly we must exclude from the generalised space regions of the type

given by
{xa-a;by + (ya-yby + (za-Zby<(r' (422).

Let us consider the contribution to the whole integral fl'-^ which must be

Fio. 14.

removed on account of this particular exclusion. The whole integral may

be taken to represent all possible ways of distributing the centres of the
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molecules A, B, ... throughout a volume Df, each position being equally

likely for each molecule. In this case the contribution which satisfies con-

dition (422) represents all arrangements for which the centres of A and B
lie within a distance o- of one another.

Ill fig. 14 let the shaded part represent the layer of thickness ^ cr close to

the boundary of the vessel, and let the spheres represent possible positions

for the molecule B of diameter cr.

If 5 is in a position in which its centre is at a distance greater than <t

fi:om the boundary of the volume H', the proportion of configurations repre-

sented in the generalised space in which condition (422) is satisfied—or, what

is the same thing, in which the centre of A lies within a sphere of radius o-

surrounding B—is equal to the ratio of the volume of this sphere to the

whole volume which is available for the centre of A , and is therefore equal to

|7ro^/n'. If, however, 5 is in a position in which its centre is at a distance

less than o- from the boundary of the volume O', including being in a position

such as I. in fig. 14 in which its centre is at a distance greater than \<r from

the boundary, and also being in a position sueh as il. in fig. 14, in which its

centre is at a distance less than ^a from the boundary, then the proportion

in question is less than that just found, since it is only possible for A to lie in

that portion of a sphere of radius a surrounding B which lies inside the

volume n'. Ultimately, when B is in position ill., the proportion is only

one-half of the above quantity, namely, Itto-YO', for it is now only possible

for A to lie inside a single hemisphere of the sphere about B. On
averaging over all positions of B it is obviously legitimate to disregard the

exceptional cases ii. and in., and so we arrive at the result that the proportion

of cases in which condition (422) is satisfied is fTro-^fl'. Thus if condition

(422) defined the only region to be excluded, the whole integral Vl'^ would

have to be reduced by ^ira^jOf^''^.

There are, however, \N{N — 1) such conditions, corresponding to all

possible pairs of molecules. The total reduction is therefore \N{N—1)
times the foregoing amount. From this must be subtracted a quantity

representing regions in which two of the conditions of the type of (422) are

satisfied at once. This again must be corrected on account of the possibility

of more than two of these conditions being satisfied at once, and so on,

indefinitely.

In this way we obtain an expansion in descending powers of H', of which

the first two terms have been shewn to be

I {a,h, c, d ...) = Q.'^ - lira^N {N -\) ^'^-"^ -¥ (423).

The integral I{h, c,d...) can be evaluated in a similar way except that

in this case the molecule A is supposed already to be in collision with the
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boundary, and therefore in position ill. in fig. 14. Hence the available space

for the centres of the molecules B,G, ... is H' — ftto-* instead of the former II',

and the number of molecules is i^T— 1 instead of N. Making the necessary

alterations in equation (423) we obtain an expansion in the form

I{b,c,d...) = (O'-fTTo^)^-! - l7ra^(N- I) (1^-2) (H'- fTraO^-^

(424).

Equation (421) accordingly leads to the value

_ (O' - Itto-^)^-^ - |7ro-« (i\r - 1) (iVr_ 2) (n' - |7ray-2 + . .

.

""^
~

n'^ - ^7ra'N{N - 1) ft'^-i + .

.'.

on expanding as far as the first two terms ; and since, in the limit, we

may put

we obtain vi, in the form

vi = v + ^7ra^v^+ (425).

Using this value for v^ in equation (420) we obtain the equation

p-wrh'-^-"^-)^^ ("^s)'

which agrees with equation (361) as far as the first two terms.

219. This method can of course be used to obtain the expansion (425)

for Vb to as many terms as we please, but the calculations prove to be

laborious, and the results are of little value, since they involve the sup-

position that the molecules are spherical. This supposition may perhaps

lead to fairly accurate results when we are concerned only with first-order

terms, but can hardly be expected to lead to accurate results as regards

second-order terms, except perhaps for molecules which really are spherical.

As has been already mentioned (^ 185), Boltzmann has calculated the

second-order terms by the method of the virial, and finds that equation (425)

may be replaced by

27ra3 . 5 /2ITTCr*.3\ 2

vb-=v + ^^v^ + ^ (^) 1^ + (427).

220. We have next to examine how to allow for the existence of forces

of cohesion in the pressure-equation. The physical effect of forces of

cohesion has already been explained (§ 176) in deducing the equation of

Van der Waals, so that we may start at once with the conception of a
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permanent field of force, at and near to the boundary of the gas. The

effect of this field of force upon the gas as a whole will be to alter the

density of the gas at points near the boundary.

Let
"x^

be the amount of work which must be done on a molecule to drag

it from a point in the interior of the gas to the boundary, in opposition to

the attractive forces of cohesion, then the density at the boundary, say p^,

must by equation (232) be given by

P.^pe-^'^^ (428),

where p is the density inside the gas, and so is equal to the mean density of

the gas as a whole. '

If the efiect of the forces of cohesion is small, the density of the gas will

be approximately the same everywhere, and x ^i^^ ^^ ^^ *^^ form py^,

where i/r is independent of the density.

221. Obviously the pressure in the gas depends only on the density

of gas in the layer nearest to the boundary, and so is the same for the gas

we have now under consideration as it would be for. a gas which was

unaffected by forces of cohesion, and was of uniform density p^ throughout.

Hence the pressure is given by

p = v,{po)RT
.'

(429),

where Vb{po) denotes the effective density Vb for a gas of density p^, the value

of po being given by equation (428).

222. Equation (429) expresses the general relation between pressure,

volume and temperature. Using the value of Vb provided by equation (425),

it becomes
p = Er(i/e-2'»x + |7ra»i;='e-4'ix+ ...) (430).

The bracket on the right may be regarded as the product of e''^^^ and an

expansion of powers o-'e-^^x. If we introduce a new quantity a-c defined by

(T, = ae-^^^ (431),

the pressure will be given by

p = RTvb{<To)e-^^^ (432),

where

vi{a,) = v^-'^v^+ (433),

and 80 is the same function of a-c as is Vb of <r.
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Small Deviations from Boyle's Law.

223. When the deviations from Boyle's Law are small, x ™^^y ^^ replaced

by p-^, and (Tc identified with cr. Thus in equation (432), e"^^* may be

replaced by \ — '2hpy^ or 1—-^^, and Vbic^ becomes identical with vi, or

V (1 + f TTcr* v)y which again, in the notation of § 175, becomes vil ¥ -\. Thus

equation (432) becomes

^=^^nin)(^-|l)'

which, as far as the first order of small quantities, may equally be written in

the form

RNT a ,.o^N
p = T—i (434),

where a = N^my^. This is identical with Van der Waals' equation.

The Equation of State of DieteHci.

224. Making use of the relation just obtained between -v/r and a, it

appears that, for small deviations from Boyle's Law, equation (432) becomes

identical with

RNT _^_ ,,„.,« = -e BNTv (43o),^ V —

an equation of state first suggested by Dieterici *

225. Theoretically, this equation has exactly the same range of validity

as Van der Waals' Law, being true to the first order of small quantities only.

In a former section we examined what errors were involved in assuming

Van der Waals' Law to be true beyond the first order of small quantities : it

was found that at the critical point Van der Waals' Law predicted a ratio of

b/v equal to 3, whereas the true value is about 2, while for the ratio K defined

by equation (408), Van der Waals' Law predicted a value 2|, whereas the

true value is about 3"7. It is worth examining whether equation (435)

agrees better or worse with experiment than Van der Waals' Law in ranges

where the deviations are no longer small.

* Wied. Ann. lxv. (1898), p. 826 and lxix. (1899), p. 685.
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If equation (435) were true throughout the whole range of pressure,

volume and temperature, the equations giving the critical point, namely

dp d^
dv ' dv' '

would be

(^b)~RWT^^^ ^'*^^^-

(iT^'' RNTv'^^ ^^'^^^•

From these we obtain at once, at the critical point,

Vc = 2b (438),

and mr^^^-

Thus pe =—y— e-\

so that the ratio K is given by

K =?^ = ^e-' = S-695 (439).

It is at once apparent that the values of Vc and K given by equations (438)

and (439) agree very much better with experiment than the values 36 and
2*66 given by Van der Waals' equation. Thus, although equation (435) has

the same meaning as Van der Waals' equation within the range in which

these equations are applicable, yet equation (435) follows the true laws

much more closely than Van der Waals' equation when we pass outside

this range.

On substituting the values of Tc, pc and Vc, the "reduced" form of

equation (435) is found to be

p(2t)-l) = fe V vj (440).

226. Comparison with experiment. If equation (435) were accurately

true, we should have

p{v-hy
whence, on taking logarithms of both sides, multiplying bv v and neglecting

{hlv)\

a , fRNT\ ,

RNT='^'s[-pr)-^^-

j ought to be constant

along any isothermal, and from § 223 it follows that the same result could be

obtained from Van der Waals' equation.
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The following table gives corresponding values of p and v observed at the

critical temperature of isopentane, by Young*. This temperature according

to Young is 187"8°C., the critical volume being 4*266 cubic centimetres for

1 gramme of the gas, and the value of K being 3"739. The values of^ in the

third column are calculated by Dietericif from equation (440), and those of

7? ATT^
V log in the fourth column from Young's observations.

Critical Isothermal of Isopentane.

Critical temperature = 187"8°C. Critical volume = 4*266 c.c. per gramme.

Volume V, Pressure p. Pressure p , RNT
V log

° pvper gramme mm. of mercury (calc.)

2*4 49080 42730 1*271

2*5 40560 35810 1*486

2-6 S4980 32090 1-669

2-8 28940 28390 1*938

3*0 26460 26780 2-103

3*2 25490 26000 2*205

3*6 25050 25420 2*326

4-0 25020 25320 2-402

4-3 25010 25300 2-447

4*6 2500<J 25300 2-483

5 24990 2bMQ 2-520

6 24840 24880 2-564

7 24400 — 2-577

8 23710 23400 2-582

9 22930 — 2-576

10 22040 21590 2-575

12 20300 19850 2-568

15 17980 17540 2-548

20 14840 14560 2-564

30 10950 10770 2-526

40 8570 8508 2-624

50 7068 7025 2-625

60 6001 5978 2-652

80 4614 4604 2-680

90 4132 4127 2-637

100 3750 3740 2-680

TiNT
It appears that v log is approximately constant for all pressures less

than about 12 atmospheres, shewing the range within which a first approxi-

mation holds. There is, however, very tolerably good agreement between

the observed and calculated values of jo far beyond this range, indicating

considerable accuracy in the equation of state.

• S. Young, Proc. Roy. Soc. xv. p. 126 and xvr. p. 11.

t Annalen der Physik, v. p. 58, 1901.
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Values of Constants at the Critical Point.

227. The following table gives some values observed for the quantity

K by reliable observers *

:

Gas K Observer

Argon
Oxygen

3-283

3-346

3-53

3-67

3-61

3 61
3-68

3-71

3-75

• 3-78

3-81

Onnes t
Mathias J
Berthelot§Nitrogen

Marsh gas

Carbon-dioxide ...

CCI.
Young

II

SnCli
CoH^Br

1

Ce H5 CI

HydrogenH
Nitrogen IT

Air**
Oxygenft
Carbon-dioxide JJ

Argon §§

It may be added that Young is of opinion that for all substances which

can attain the critical state without chemical change, K is nearly constant,

and has a value of about 3-7.

It is more difficult to give values of the ratio of Vc to b, for b is difficult to

determine, and for many substances, different experimenters give widely

different values for the critical constants. The following values are, however,

fairly reliable

:

V, = -00269, b = -00096, v^/b = 2-80,

Vc = -00382, b = -00255, v^/b = 1-50.

Va = -00392, b = -00209, vjb = 1-89,

Vc = -00332, 6 = -00228, v^/b = 1-46,

Vc = -00424, b = -00228, Vcjb = 1-86,

yc
= -00328, 6 = -00232, ^^ = 1-41.

Thus what evidence there is suggests that the values K = 3 7 and

Vc/b = 2'0 are fairly close to the truth
j|||.

* A more complete table is given by Kuenen, Die Zustandsgleichung der Gase und FlUssig-

keiten,p.&0. f Communications from the Physical Laboratory of Leiden, 120 a,
i). 11(1911).

:J:
Mathias and Kamerlingh Onnes, Communications from the Physical Laboratory of Leiden,

117 (1911). § Bull, de la Soc. Franq. de Phys. 167 (1901), p. 4.

II
Phil. Mag. 1892, p. 503, 1894, p. 1, and l. (1900), p. 303.

^ The critical volumes are deduced from Dewar's values of the critical density (from the

rectilinear diameter).
** Obtained by combining Witkowski's isothermals for air at low temperatures with

Olszewski's values for the critical temperature and pressure (see p. 161).

t+ The value of u^ is that given by Mathias and Kamerlingh Onnes (Leyden Comm. No. 117).

The value of b is deduced from the value of Jo- given by the coefficient of viscosity (cf . § 397 below).

U Obtained from Amagat's experiments, giving a critical density 0-464. This value of t\ agrees

closely with that resulting from Keesom's experimental study of the critical isothermal of 002-

§§ The value of v^ is that given by Kamerlingh Onnes (Leyden Comm. No. 120 a). The value

of b is deduced in the same way as for oxygen.

nil Berthelot states as a general rule that the critical volume is about equal to foar times the

co-volume v„ given by our equation (394), which, however, he also takes to be the same aa b (see

Recueil de Constantes Physiques, p. 244. The relation Vc— 4Vq gives vjb= l'35. Many investi-

gators have taken Berthelot's statement to mean that vjb=4.

J. G. 12



CHAPTER VII

PHYSICAL PROPERTIES (continued)

mass motion, thermodynamics, c^alollimetry and dissociation

The equations of Mass Motion.

228. In the last chapter some insight was obtained into the way in

which pressure is exercised by a collection of moving molecules. We shall

now attempt to carry further the study of the physical properties of a medium
consisting of moving molecules, especially with reference to the similarities

between the behaviour of such a medium and a continuous fluid.

We shall no longer consider only problems in which the gas is in a

steady state, so that the law of distribution is Maxwell's law at every point.

We shall consider problems in which the law of distribution of velocities is

the general lawy(w, v, w), and, moreover, it will no longer be supposed that

the law of distribution is the same at every point : we shall suppose the law

of distribution to depend on x, y, z, as well as on u, v, w. When it is required

to indicate this we shall write the law of distribution in the form

f[u, V, w, X, y, z).

The number of molecules having their centres Avithin the element of

volume dxdydz surrounding the point x, y, z, and having their velocities

within a range dudvdw surrounding the values u, v, w, will be

vf{u, V, w, X, y, z) dudvdwdxdydz (441).

In this expression v will in general be a function of x, y, z, and will be

evaluated at the same point as /. It is often convenient to think of the

product j^ as a single variable.

Hydrodynamical Equation of Continuity.

229. Consider now the small element of volume dxdydz inside the gas,

having its centre at ^, r], ^ and bounded by the six planes, parallel to the

coordinate planes, of which the equations are

x = ^±^dx, y=v±hdy, z=^±^dz (4421
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The number of molecules of class A (defined on p. 16) which cross the

plane x = ^ — ^dx into this element of volume in time dt will be

1
1 vfi^y '*^> ^> ^ ~hdx, y, z) dydzdadvdwudt,

where the integration is with respect to y, z and is between the limits

y =r) ±^dy, z=^±\dz. As far as squares of small quantities this may
be written in the form

vf{u, V, w, ^ — \dx, 7), f) dydzdudvdwudt (443).

Similarly the number of molecules of class A which cross the plane

x=^-'r\dx out of the element of volume is given by expression (443) if

^ — ^dx is replaced by ^ + ^dx. By subtraction, the resulting loss to the

element, of molecules of class A, caused by motion through the two faces

perpendicular to the axis of x, is

a" bifi^^f ^' w)]dxdydzdudvdwudt (444),

in which the differential coefficient is evaluated at ^, 77, ^. The net loss of

molecules of class A caused by motion through all the faces is therefore

(r) r) 7) \

u — + v^ + W:^] [vf{ii, V, vj)\ dudvdwdxdydzdt (445).

By integration over all values of u, v and w, we obtain the total number

of molecules which are lost to the element dxdydz in time dt. If we write

\\\uf{u,v,w)dudvdw = UQ, etc (446),

so that Wo. ^o> ^0 are the components of mass velocity of the gas at x, y, z,

this number is seen to be

— {vUq) +— {vvn) + ^ (i^^o) j
dxdydz dt (447).

Since, however, the number of molecules in the element at time t is

dv
ISvdxdydz, and at time t + dt is ( v + -j- dt) dxdydz, the net loss

— -Tfdtdxdydz.

Equating this to expression (447), we obtain

This is the hydrodynamical equation of continuity, expressing the

permanence of the molecules of the gas—in other words, the conservation

of mass.

12 2
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Hydrodynamical Equations of Motion.

230. The loss of each molecule of class A to the element means a loss of

momentum parallel to the axis of x equal to mn. Hence the total loss of

momentum parallel to the axis of x arising from this cause in time dt is,

from expression (445),

mdxdydzdt \\\y''^^ + w^ ^ +uw—\ [vf{u, v, w)]dudvdw ...{M9).

u^f{u, V, lu) dudvdw = v? (450),

Let us write

\uvf{ii, V, w) dudvdw = iiv (451),

etc.,

so that u^, uv, etc. are the mean values of u^, uv, etc. at the point x, y, z.

mdxdydzdt {--{vu^) + r- {vuv)+ —{vuw)\ (452).

Then expression (449) becomes

dy

With this must be compounded a gain of momentum caused by the

action of forces on the molecules. The gain of momentum parallel to the

axis of X accruing to any single molecule in time dt is Xdt, where X is the

component of force parallel to the axis oi x, including of course intermolecular

forces and forces at collision, acting upon the molecule in question. Com-

bining the sum of these gains with the loss given by expression (452), we find

for the net increase of momentum inside the element dxdydz in time dt,

— mdxdydz ( w- (vu^) + ^ (vuv) + ^ (vuw)
j

where S denotes summation over all the molecules which were inside the

element dxdydz at the beginning of the interval dt.

The total a:;-momentum inside the element dxdydz at time t is. however,

mvUodxdydz. Hence the gain in time dt may be expressed as

d
-7- (vuo) mdxdydzdt,

XX dt (453),

and equating this to expression (453), we obtain

mdxdydz = XX . . .(454).
Jt

^'"^^ + dx
^"'^^ + ly

(^"^> + Iz
(^'"'"^).

These and the similar equations in y, z are the hydrodynamical equations of

motion of the gas, expressing the conservation of momentum, except in so

far as this momentum is changed by the action of external forces.
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231. If, as in § 26, we write

u = Uq-\- u, etc.

we have u = Uq, and u = 0. Thus uv = UqVq-\- uv, and similarly for u^ and uw.

Hence we have

o n o

7\ 7^ 7\ S 7\ 7)

=
9^

('^0=^) +
^y

(^«o«'o) + ^^
{vu,iu,) +^ {vu^) + ^ (i^Ln/) + ^ (i^uw) . . . (455).

Again, using the equation of continuity (448),

d . . duo dv

di^''''''^
= ''-dt^'''>dt

duo (d , X 9 . X 9 / x\

9y

so that on adding corresponding sides of this equation and (455), we obtain

i <*"> + £(""'> + 1,
<"""> + S (""^^

The left-hand member of the equation is, however, identical with the bracket

in equation (454), so that this equation now becomes

(d 9 a o\ J J J

= xx
a^^'^^^^ + a^^^^^^ + a-.^^"^)

mdxdydz ...{4!o6).

232. We now proceed to examine more closely the system of forces

which act upon those molecules of which the centres are inside the element

d^dydz—the system of forces which we have so far been content to denote

by tX, tY, tZ.

These forces will be supposed to arise partly from the action of an

external field of force upon the molecules of the gas, and partly from the

actions of the molecules upon one another.

If there is a field of external force of components H, H, Z per unit mass,

the contribution to SX will be

"B-mvdxdydz (457).

The remaining contribution of SX arises from the intermolecular forces.

As regards the forces between a pair of molecules, both of which are inside

the element dxdydz, we see that, since action and reaction are equal and

opposite, the total contribution to %X will be nil. We are left with forces



182 Physical Froperties: Calorimetry, etc. [ch. vii

between pairs of molecules such that one is inside and the other outside the

element dxdydz, that is to say, intermolecular forces which act across the

boundary of this element. The range of intermolecular forces may be treated

as small even compared with the dimensions of the element dxdydz, so that

the forces arise from pairs of molecules which lie close to the boundary, but

on opposite sides.

Let the sum of the components of all the forces of this kind per unit area

across a plane perpendicular to the axis of x be denoted by utx^, Ts^y, -gs^^,

and let us adopt a similar notation as regards pressures across planes perpen-

dicular to the axes of y and z. Then the contribution to '%X which comes

from forces acting across the planes x='^ ± \dx is

{'^xx)x=^-ldxdydz-{'aT^^)^^^_^:Lcudydz = - -^dxdydz.

On adding similar contributions from the other planes, we find that the

a;-component of all the molecular forces which act on the element dxdydz can

be put in the form

Combining this contribution to 2X with that already found (expression

(457)), we find, as the whole value of 2X,

'mvB - (^-^ + ^-^ + ^j] dxdydz,

and there are, of course, similar equations giving the values of SFand "EZ.

sz =

233. Hence equation (456), on dividing throughout by dxdydz and

replacing mv by p, becomes

/d d d d\

O O ')

and this gives another form, alternate to equation (456), of the equations of

motion of the gas.

Evaluation of the Stresses in a Gas.

234. Let us write

^—
- (459),

Pj/a; = •BTjya: + pUV, etC. J

then equation (458) may be written

P[dt+''^Bx^'^Fy^''^Bz)^^ = P^-~^x--Bf-~Bf--'^'''^-
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This equation is identical in form with the hydrodynaraical equation of a

fluid of density p moving with a velocity Uq, Vo, Wq, the body forces being

S, H, Z per unit mass, and the pressures being the system

^xxi '^yxi -t^zxy -t^xyf ^tC (^'iDi^.

We may, therefore, speak of this system of pressures as the total pressure at

the point x, y, z. As is clear from equation (459), the pressures arise partly

from the intermolecular forces and partly from the molecular agitation in

the gas.

235. If we multiply equation (448) throughout by m, it becomes

which is formally the same as the hydrodynamical equation of continuity, and

the hydrodynamical analogy is now complete.

We have, therefore, seen that we may regard a gas as a continuous

fluid, of which the motion is subject to hydrodynamical equations of motion

and continuity of the usual type. This is the justification, in discussing

the mass-motion of gases—the propagation of sound, for instance,—for

treating the gas as if it was a continuous fluid of the kind contemplated

in hydrodynamics.

Molecules of Finite Size.

236. In order to separate the difficulties as much as possible, and so

simplify the treatment of the subject, it has been found convenient to defer

the difficulties introduced by the finite size of the molecules. The finite size

can, as has already been explained, be supposed to have been allowed for in

the field of intermolecular force, but in order to get results which admit of

easy interpretation it is best to suppose the molecules to be of finite size, in

addition to possessing fields of intermolecular force.

^ If Vx,y,z is the " effective molecular density " at x, y, z as defined in § 67,

then the expectation of the number of molecules of which the centres lie

within any element of volume must be taken to be

\\\vx,y,zdxdydz.

where the integration extends throughout the element of volume in question.

This, however, as has been seen in § 68, must be equal to

V jjjdxdydz,

provided the integral is taken through a volume large enough to contain a

great number of molecules, and this is identical with the value assumed when

the molecules were supposed infinitesimal.
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Similarly the number of molecules crossing an element of surface dB
will contain as a factor

r r

Vx,y,zdS (463),

but if this element of surface is great compared with the size of a molecule,

while at the same time v is approximately constant while we pass in any
direction over a distance comparable with the size of dS, then the factor may
also be written

\dS (464),

which, again, was the value assumed for infinitesimal molecules.

A complication occurs in the neighbourhood of the boundary, because

here, as appeared in the last chapter, the value of v may vary perceptibly

over a distance comparable with the molecular diameter. If, then, dS is an

element of surface at a distance ^a from the boundary and parallel to

the boundary, expression (463) must be replaced, not by expression (464),

but by

VbjjdS (465),

where vi, is the same as the i^^ of § 218.

It will now be clear that all the analysis of the present chapter will hold,

even after allowing for the finite size of the molecules, if we take v to be the

density everywhere except at the boundary, provided that, in considering an
element of surface at distance ^o- from the boundary, we replace v hy vi,.

In calculating the pressure, it will be remembered, we assumed the

element of volume so great that intermolecular forces could not act across it.

At the same time we assume it so small that the density is approximately

constant throughout. These assumptions become incompatible at the

boundary, because the density, as is clear from § 176, varies over a range

across which intermolecular forces can and do act. In this case, however, we
can abandon the supposition that the density will be approximately constant

throughout. All that is required is a knowledge of the mean density in the

element of volume, and this, on account of the thinness of the layer near the

surface in which the mean density differs perceptibly from v, may still be

taken to be v.

Gas in Equilibrium.

237. In equations (459) we obtain general formulae for the pressures of

a gas in motion. We shall now examine the form assumed by these equations,

when the gas is in equilibrium, and shall find that it is possible to obtain

alternative proofs of a number of the theorems which have already been
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proved about the equilibrium state of a gas. We may take the law of

distribution of velocities to be Maxwell's Law at every point, so that

p\i'^ = pu^ = vinii^ =
—J ,

by equations (334), and

uv = vw = wu = 0.

Thus of the system of pressures specified by equations (459), that part

which arises from molecular agitation reduces to a simple hydrostatical

pressure of amount ^ . Clearly the cr system of pressures, arising from

the intermolecular forces, also reduces to a simple hydrostatical pressure

zr, and we therefore have

^xx ^^ '-yy ^^ -^2z = '5'' + '^T )

P = P = P =0-i- xy — -' xz -' yz — "•

The total pressure at the point x, y, z is therefore a simple hydrostatical

pressure of amount P given by

^=- + a <*««'•

an equation which may be compared with the virial equation (367).

238. The equations of equilibrium become

pH = |^,etc (467).

The conditions for equilibrium to be possible are, therefore, three of the type

In general, the result of eliminating the unknown variable p from these

equations is

S(f-|).H(|_f).z(|--).o (468,

If the gas is at the same temperature throughout, the intermolecular

pressure ts will depend solely on p, so that we can regard P as a function

of p only, and equation (467) can be written in the form

- 3 {dP
. ,

(469).
dxj p

There are of course two similar equations for H, Z, and the system of

three equations taken together simply expresses that the forces must have

a potential. This condition being satisfied, that expressed by equation (468)

is satisfied also, but the two conditions are not identical. It is only in the

case of a gas at a uniform temperature throughout that the one can be

deduced from the other.
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239. If the temperature is supposed uniform, and if the forces H, H, Z

are derived from a potential V, it is clear from equations (469) that this

potential must be

V=- [-- (470),
J P

T7" — I
^^ ^

/ ^P

or, substituting for P from equation (466),

i-sT I I'd

p 2hm J p

P

I'd'nr 1 .
, ,

^ry— log p + a constant,

.2hm{v+i'^

leading to the equation for p,

p = py^'"-V'^jTJ (471).

Clearly equation (223) obtained in Chapter V was a special case of the

equation just found, for % in that equation has the same meaning as the

present rnV, and the assumption of infinitesimal hard spherical molecules

requires us to take ot = 0.

240. When no external forces act, the equations of equilibrium (467) shew

that P must be constant throughout the gas. Indeed, it is obvious that

when a gas is in equilibrium under no forces the total pressure P must be

the sp-me throughout. And at the boundary the total pressure must become

identical with the pressure p at the boundary calculated in the last chapter.

This, then, is the constant value of P; it is what is commonly called the

pressure of the gas.

Equation (466) shews that at every point in the gas

p-- + lk
<*''^-

If we calculate p at a distance just greater than |cr from the boundary,

we may put •sr = 0, for the number of molecules whose centres lie between

this layer and the boundary is infinitesimal. In doing this we must, as

explained in § 236, take Vb to be the value of v, and so equation (472)

becomes

p = ?h
(«=>>•

As in the treatment of Van der Waals' cohesion (§ 220), we can denote the

density inside the gas by p, and that at the boundary by po. Equation (473)

may now be expressed in the more complete form

p=-'-^j^ (474),

agreeing with the value of the pressure calculated in the last chapter

(equation (429)).



239-241] Equations of Mass Motion 187

From equations (472) and (473) we obtain

^ = ^^^^" (475),

giving a general expression for the intermolecular pressure «r.

241. Let us write ct = •nr,. + ctj,

where -CTc is the part of -or produced by collisions

—

i.e. encounters in which

the molecules are so close that they cannot approach any nearer,—and -57^ is

the part of ts produced by the outstanding intermolecular forces between

pairs of molecules not in contact. Obviously rsi will be negative when these

outstanding intermolecular forces are attractive, as with forces of cohesion.

We have already calculated a value for ts ; we can now calculate Wj and

CTc separately.

Imagine a rigid plane surface of area unity set up and held at rest at

some point inside the gas. This operation will not affect the distribution of

density inside the gas, for the field of intermolecular force will exist on both

sides of the area. The pressure produced by molecular impacts on either side

of the area will of course be the same, say pi. Treating this surface as we

have already (§ 240) treated the surface which forms the true boundary of

the gas, we obtain equations giving the constant p in the form

P = -. + ^* («6),

by considering an area at a distance just greater than \(t from the fixed

area; and

by considering an area at a distance just less than \<t from the fixed area.

Incidentally we may notice that by comparing the two we obtain for the

internal pressure pi the value

Pi=\^[^ = Rv,(p)T (477).

Returning to the value found for p in equation (476), and replacing p by

tain

Vb (po) - Vh (p)

its known value » = —fVi > we obtain

'STi=^
2h

We also have found that

Vb (po) - V

whence, by subtraction,

_Vb {p)-v

These equations give mi and 'stc separately.

.(478).
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242. To obtain some insight into the meaning of these pressures, let us

examine what they become when the deviations from Boyle's Law are. small.

If we put p = ^ .^ in Van der Waals' equation, we get

or again, for the pressure on an area inside the gas, noticing that the

cohesion term must be supposed to vanish in this case,

'^(v-h) = RNT (479).

From these equations we obtain at once

2/i
'^

v^ 2h '

so that ^^_
t>6(po)-^.(p) ^_a

(480X

and T!7i becomes identical except for sign with the cohesion pressure assumed

in arriving at Van der Waals' equation, as we should expect.

We have also

vt,{p)-v RNT RNT h (RNT\ h( a\ ,,„,,

so that -sTc turns out to be proportional to the h of Van der Waals' equation,

being a fraction - of the total internal pressure [p ¥ -

Thus the two pressures t^i and -sr^, are the two physical agencies which

necessitate the constants a and h in Van der Waals' Law. In fact

equation (472), namely

^ = " + 2A'
can be written in the form

RNT
V

or, again (^p-^.)L- "^"^
] = RNT (482),

V p — t3-j7

which is of Van der Waals' form, and immediately gives the values of a, b by

comparison.

It could by no means have been predicted without consideration that the

pressure ^c would have a finite value. This pressure originates in the

impacts between pairs of molecules in collision. The number of pairs in

collision at any instant is infinitesimal, while the pressure between each pair

is infinite. It is the product of this infinitesimal number and infinite

pressure that produces the finite pressure tsr^.
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Thermodynamics.

Equation of Energy.

243. The total energy of the gas may be divided into internal and

external. The former consists of the kinetic energy of molecular motion

and the potential energy of intermolecular forces. The external energy is

measured by the work which could be performed by the gas in expanding

to a state of infinite rarity starting from its present configuration, this

work of course being performed by the pressure of the gas. The external

energy will be denoted by 3is the internal energy by (5. We may write

^ = NE-\-^ (483),

where E is the mean energy of the N molecules, and <t> is the potential

energy of the intermolecular forces.

244. Let us suppose that a quantity dQ of energy, either in the form

of heat or otherwise, is absorbed by the gas from some external source, so that

as a consequence the pressure, volume and temperature of the gas change.

Let us suppose that after this absorption of heat the gas again assumes

a steady state, and that in the new state the values of 2S and (§ have become

changed to 28 + d2B and (S + d(S. The energy equation—obtained by

equating the total energies before and after the change—is

dQ = d(k + dm = NdE + d^-\-d^ (484).

If we suppose the volume of the gas increased, by a small element dS
of the surface moving a small distance dn parallel to itself normally outwards,

then obviously the work done by the gas will be that of moving a force pdS
through a distance dn, and is therefore pdSdn. The resulting increase in

volume (dv) is of course the sum of the contributions dSdn from all the

elements of surface which are moved, so that the value. of o?28 is

d^B=pdv (485).

Thus equation (484) becomes

dQ = NdE+pdv + d^ (486).

245. We know on experimental grounds (§ 172) that d^ is very small.

If we take d(i> = 0, equation (486) assumes the form

dQ = NdE+pdv (487),

or, replacing^ by its value RpbT,

dQ = NdE + RvtTdv (488).
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246. If we do not neglect the term c^<E>, the calculation becomes con-

siderably more difficult, for the intermolecular pressure ot will do work when
the gas expands. .

It is at once obvious that the work done by the part sjc of this pressure is

nil, for the number of collisions in being at any instant is infinitesimal, and
only at most a finite amount of work can be done by each of these, so that

the total work is nil.

To evaluate the work done by the pressure tzri we may suppose that in the

process of expansion any element dxdydz of the gas expands to a volume
{l+€)dxdydz. The resulting contribution to d't> from this element is

— vTiedxdydz, the negative sign indicating that work is done by the pressure

on the gas, and not as before by the gas against the pressure. The total

value of d^^ is the sum of all these contributions, and is accordingly

cZ4> = — \\\ vTiedxdydz

= — 57f M 1 edxdydz

= -'STidv (489)

= _-AP^J^lMdv (490),

by equation (478).

247. The energy equation (486) now assumes the form

dQ = NdE+pdv + d(i>

Vh (Po) Vj, (po) - V,, (p)= NdE +
2h 2h

dv

=.NdE + '^dv
'Ik

= NdE^Rvr,{p)Tdv (491).

This general equation of energy is now seen to be exactly the same in

form as equation (488) which was obtained by the neglect of the forces of

cohesion, but the value of Vb (p) must now be calculated on the supposition of

a uniform density p equal to the mean density of the gas. The value of v^y (p)

is obviously a function only of the constants and of the volume or density

of the gas (cf for instance equations (425) or (479) in which y^ (p) is calculated

in special cases).

The First Law of Thermodynamics.

248. The law which is commonly called the first law of thermodynamics

is that contained in equation (484) and simply expresses that heat is energy,

which is capable of transformation into other forms of energy, such, for
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instance, as the kinetic energy of motion of material masses. This law is,

however, included in the hypothesis upon which the kinetic theory is based,

so that, for the kinetic theory, the first law of thermodynamics is reduced

to a truism. For the special problem of a gas such as we have had under con-

sideration, the first law of thermodynamics will be expressed by equation (491).

The Second Law of Thermodynamics.

249. If equation (491) is divided throughout by T, it becomes

^ =N^ + Rv,{p)dv (492).

In this equation, the gas is supposed to remain of the same constitution

throughout its change of state. Thus E is a function of T only, and Vf, (p)

of V only, so that the two terms -™- and Vb (p) dv are each complete

differentials. It follows that the right-hand member of (492) is a complete

diiFerential, say d<f>, so that

f=# (493).

The quantity
(f>

introduced in this way is, however, nothing but the

entropy, already introduced in § 94. The circumstance that the gas obeys

an equation of the form of (493) merely shews that the gas is subject to the

second law of thermodynamics. The value of the entropy
(f)

is now seen to

be given by _

<f>
= NJ^+RJv,(p)dv (494),

and it appears that the entropy is the sum of two terms, one depending only

on t\\e motion and internal energies of the molecules, and the other only on

their positions.

250. In § 94, considering the more general case of a gas not necessarily

in its normal state, we found for
(f)

the general value

^ = it log W -I- a constant (495).

In this equation W is the whole volume of that part of the generalised

space of Chapter V which represents systems having a given arrangement for

the velocities and positions of the molecules.

The whole volume of this generalised space, say li, may be regarded as

the product of two spaces ily and Qp, fly being a space in which all velocity

coordinates are represented, and Up a space in which all positional co-

ordinates are represented.
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W . .

Let -^— be the fraction of the first space in which the velocities have

Wp
any specified arrangement, and let -pr— be the fraction of the second space

in which the positional coordinates have their required arrangement. Then
the fraction of the whole space in which both velocities and positional

coordinates have the assigned arrangement will be given by

so that W = Wy Wp, and equation (495) may be replaced by

(^ = i^ log TTpr + i^ log Fp + a constant (496),

shewing that the entropy is the sum of two parts, one depending on the

velocities only, and one on the positional coordinates only, say
(f)
=

(f)y+ cbp.

The maximum value of ^ leads to the normal state, and so is given by

equation (494). It accordingly appears that the two terms on the right-

hand of equation (494) represent the maximum values of (j)y and (pp

respectively.

251. Let us examine this question somewhat more in detail, confining

ourselves for simplicity to the particular case in which the molecules are the

elastic spheres of Chapter III.

We have seen that the value of
(f)y is

(f)y
= R log Wy + a constant (497),

where (cf § 51)

W = 6a X (ix constant),

s=n
and log 6a = ^ constant — 2 a,, log a^.

«=i

Thus the value oi 4>v given by equation (497) reduces to

^^^ = a constant — i^ S aglogUg (498).
s = \

We may now replace a« by f(u,v,w)dudvdw, and replace the summation

over the n possible ranges into which all possible velocities are supposed to

be divided by an integration over all values of u, v, w. Equation (498)

becomes

^pr = a constant — R \\\ flogfdadvdw,

or if H is defined, as in § 22, by the equation

H=
1 1 1

flogfdudvdw,
\

we have

<f)y
= a constant - Rll (499).
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Thus finding the minimum value of if in § 23 was in efifect the same

thing as finding the maximum value of 0^ and led to the steady or normal

state accordingly.

In the same way, the equation for <^p, namely

<^P = R log Wp + a constant,

can be shewn to lead, with the help of the analysis of § 43, to

(j)p= a constant — R 1 ag log a^

= a constant — E
1

1 1 vlogvdxdydz (500),

and again the steady state found in § 49 is simply that for which ^p is a

maximum.

Thus the method employed in Chapter III to find the steady state was

simply that of finding the state which made the entropy a maximum
(cf. § 98).

The Physical Meaning of Entropy.

252. The importance of the entropy function ^, looked at from a purely

physical aspect, can be seen as follows. Let two systems, distinguished by

suffixes 1 and 2, have initially entropies 0i and ^^, and let a quantity dQ of

heat pass from the first to the second. The loss to ^j is -™
, while the gain

to ^ is -^. Thus the total change of entropy is

ci(<^, + (^,) = dQ(^^-^) (501).

In a process in which the entropy increases, dQ (^ — ^ j
must be

positive, and therefore heat must pass from the hotter body to the colder

;

there is a process of equalisation of temperature. In a process in which the

entropy decreases, heat must pass from the colder body to the hotter, so that

the hot body gets hotter, and the cold body gets still colder. In natural

processes, the entropy increases, and the physical process is one of equalisa-

tion of temperature.

A pparent Irreversibility.

253. We appear at this stage to have arrived again at an irreversible

phenomenon similar to that already encountered in connection with the

function H in Chapter IV. In each case the equations of motion from which

the phenomenon has been deduced were strictly reversible, and yet these

equations seem to lead to an irreversible phenomenon. To put the matter

more concretely: the machine of the universe, assuming its motion to be

J. o. 13



194 Physical Properties : Calorimetry^ etc. [ch. vii

governed by the canonical equations of motion, is just as capable of running

in one direction as in the reverse direction. If it can pass from a state A to

a state B, the equations of motion shew that it can also pass from a state B
to a state A. If the passage from J. to 5 involves an increase of entropy,

the passage from 5 to ^ must involve a decrease of entropy : in this latter

motion heat will pass from the colder bodies to the hotter.

We have seen that the entropy ^ is closely allied with the earlier

function H, and the explanation of the apparent irreversibility of ^ is

the same as that already given for H. We saw in Chapter IV that a certain

minimum value H^ was possible for H.\ if the initial value of H. were

different from 11^^, it was infinitely probable that H would decrease, but on

the other hand, it was infinitely probable—assuming the basis of probability

supplied by the generalised space—that the initial value of H would be

equal to H^, in which case, as H could not decrease further, the " expectation
"

was of a slight increase. Thus the large probability of a small increase in H
just balanced the small probability of a finite decrease in H, and on the

whole the " expectation " of change in H was nil.

A precisely similar explanation holds with reference to ^. An increase

in presupposes an initial difference of temperature between the two com-

ponent systems ; and these initial conditions, looked at from the point of view

of abstract dynamics, and judged with reference to the basis of probability

supplied by a generalised space, are infinitely improbable. With reference to

the same basis of probability, it is infinitely probable that the initial con-

ditions will be those of equilibrium of temperature, in which case the only

change possible in <^ is a decrease. Or, physically, the only possible alteration

in the state of the system is the production of inequalities of temperature.

The production of such an inequality, although improbable when the motion

is confined to a short time, is not impossible, and indeed becomes infinitely

probable when the motion is continued for a sufficient time. Thus the

increase of entropy, even granted the infinitely improbable (from the

dynamical point of view) initial conditions which makes such an increase

possible, is only a probability and not a certainty ; and when the entropy

starts initially at its maximum, it is infinitely probable that, granted sufficient

time, the entropy will decrease.

254. When applied to concrete instances, these results seem at first

sight somewhat startling. To borrow an illustration from Lord Kelvin, if

we have a bar of iron initially at uniform temperature, and subject neither

to external disturbance nor to loss of energy, it is infinitely probable that,

given sufficient time, the temperature of one half will at some time differ by

a finite amount from that of the other half. Or again, if we place a vessel

full of water over a fire, it is only probable, and not certain, that the water

will boil inatead of freezing. And moreover, if we attempt to boil the water
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a sufficient number of times, it is infinitely probable that the water will, on

some occasions, freeze instead of boil. The freezing of the water, in this

case, does not in any way imply a contravention of the laws of nature : the

occurrence is merely what is commonly described as a " coincidence," exactly

similar in kind to that which has taken place when the dealer in a game of

whist finds that he has all the trumps in his hand.

The analogy of the distribution of a pack of cards will help us to see

further into the problem presented by the entropy of a gas. In dealing

cards, it is just as likely that the dealer will have the thirteen trumps

as that he will have any other thirteen cards that we like to specify. The

occurrence of a hand composed of thirteen trumps might, however, be

justly regarded as a "coincidence," whereas the occurrence of any specified

hand in which the cards were more thoroughly mixed, could not reasonably

be so regarded. The explanation is that there are comparatively few ways in

which a hand which is all trumps can be dealt, but a great number in which

a mixed hand can be dealt.

A similar remark applies to the result of putting cold water over a hot

fire. There are comparatively few ways in which the fire can get hotter, and

the water colder, but a great many ways in which the fire can impart heat to

the water—a proposition which becomes obvious on looking at it from the

dynamical point of view of the generalised space. Speaking loosely, it is

just as likely that the water will freeze as that it will boil in any specified

way. There are, however, so many ways in which the water can boil, all

these ways being indistinguishable to us, that we can say that it is practically

certain that the water will boil.

The increase of entropy, then, simply means the passage from a more

easily distinguishable state to a less easily distinguishable state, or, in terms

of the generalised space, from a less probable to a more probable configuration.

255. A reference to equation (496) shews that the entropy consists of

two parts, the former depending on the energy of the molecules of the gas,

and the latter on their positions. So far we have considered only variations

in the first term, resulting from inequalities in the temperature of the gas.

Similar remarks could, however, be made about the variations of the second

term, these denoting inequalities in the density of the gas. A single illustra-

tion, suggested by Willard Gibbs*, will, perhaps, make clear what is meant.

If we put red and blue ink together in a vessel, and stir them up,

common experience tells us that, if we assume the inks initially to differ in

nothing more than colour, the result of stirring is a uniform violet ink.

Here we have the passage from a more easily distinguishable to a less easily

distinguishable arrangement of coloured inks. If, however, we start by stirring

* Elementary Principles of Statistical Mechanics, p. 144.

13—2
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a uniform violet ink composed of a mixture of red and blue inks, then it

is possible, although not probable, that the effect of the stirring will be to

separate the inks of different colour, so that one half of the vessel is occupied

solely by red, and the other solely by blue ink. And from the dynamical

standpoint it is no less probable that this should occur, than that we should

be able to start stirring inks which were separated initially as regards colour.

256. With reference to this subject, some well-known remarks of

Maxwell* are of interest. He says: "One of the best established facts in

thermodynamics is that it is impossible in a system enclosed in an envelope

which permits neither change of volume nor passage of heat, and in which

both the temperature and the pressure are everywhere the same, to produce

any inequality of temperature or of pressure without the expenditure of

work. This is the second law of thermodynamics, and it is undoubtedly

true so long as we can deal with bodies only in mass and have no power of

perceiving or handling the separate molecules of which they are made up.

But if we conceive a being whose faculties are so sharpened that he can

follow every molecule in its course, such a being, whose attributes are still as

essentially finite as our own, would be able to do what is at present im-

possible to us. For we have seen that the molecules in a vessel full of air at

uniform temperature are moving with velocities by no means uniform though

the mean velocity of any great number of them, arbitrarily selected, is almost

exactly uniform. Now let us suppose that such a vessel is divided into two

portions A and B, by a division in which there is a small hole, and that

a being, who can see the individual molecules, opens and closes this hole, so

as to allow only the swifter molecules to pass from A to B, and only the

slower ones to pass from jB to ^. He will thus, without expenditure of

work, raise the temperature of B and lower that of J., in contradiction to the

second law of thermodynamics."

Thus Maxwell's sorting demon could effect in a very short time what

would probably take a very long time to come about if left to the play of

chance. There would, however, be nothing contrary to natural laws in the

one case any more than in the other.

Calorimetry.

Specific Heats of a Perfect Gas.

257. We now turn to an investigation of the specific heats of a gas, and

shall begin by considering the simplest case, namely that of a perfect gas in

which the relation between pressure, volume, and temperature is

RNT .

^ V

* Theory of Heat, p. 328.
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The equation of energy in this case becomes

dQ = NdE + pdv

= NdE + RNT— (503),
V

and this may be regarded as the general equation of calorimetry for a perfect

gas.

258. Specific heat at constant volume. Let us first suppose that a

quantity dQ of energy in the form of heat is absorbed by the gas, while the

volume of the gas is maintained constant. In this case all the heat goes

towards raising the temperature of the gas, equation (503) assuming the

form _
dQ = NdE (504).

Let Cy, be the specific heat of the gas at constant volume, i.e., the amount of

heat required to raise the temperature of a unit mass of gas by one degree,

then the amount of heat required to raise the mass Nin of gas through

a temperature difference dT will be G^NmdT. Thus if /is the mechanical

equivalent of heat,

dQ = JC,NmdT,

and equation (504) becomes

^• = 3^^ (^«-')-

259. Specific heat at constant pressure. Next, let us suppose that the

absorption of heat takes place at constant pressure. In this case both the

volume and temperature will change, but from equation (502) they must

change in such a manner that

T
- = constant.
V

If we differentiate this equation logarithmically, we obtain

dT_(h
T ~ v'

as the relation between dT and dv when the pressure is maintained constant,

and using this relation, equation (503) becomes

dQ = NdE+Rmr (506).

The value of dQ is now JCpNmdT, where Gp is the specific heat at constant

pressure. Hence equation (506) leads to the relation

^^-jlfr^l <««^)'
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260. From equations (505) and (507) we obtain by subtraction

^'-(^' = §^ (50^^)-

Since m is proportional to the molecular weight of the particular gas we are

discussing, this equation expresses Carnot's Law

:

The difference of the two specific heats of a gas is inversely proportional to

the molecular iveight of the gas.

This law can be expressed in a different form. The specific heats referred

to unit volume instead of to unit mass are of course Cpp, G^p, and equation

(508) may be written

^>-^^p=7^r7T ^•^^^^'

the last transformation depending on equation (502). Hence

:

At a given temperature and pressure the difference of the two specific

heats per unit volume is the same for all gases.

261. It is found by experiment that, at any rate for a large number of

gases, Cp and €„ are approximately independent of the temperature over

a large range of temperatures and pressures. This, as is shewn bv a

d P*
reference to the formulae (505) and (507), must mean that -jyf, is a constant

dl

and therefore that the mean energy of a molecule of the gas stands in a

constant ratio to the translational energy. Let us denote this ratio by

(1 + /3), so that /3 is the ratio of internal to translational energy. Then

l'=(H-/3)|mC^

= (l+/8)fET (510),

so that ^=3J2(1 + ^) (511).

dE
Substituting this value for -y^ in equations (505) and (507), we obtain

C, = f(l+/3);^^ (512),

C'p = [1+1(1+^)];^^ (513).

If we denote the ratio (7^/(7^ by 7, we obtain by division

'^-(7, t(l+/3)

= ^+3(1^) (-^l^)-
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Adiabatic Motion.

262. Let us suppose the pressure, volume and temperature to change in

such a way that no heat enters or leaves the gas. Then since dQ = 0, we

have from equation (503)

NdE+RNT— = 0,
V

or, on substituting for E from equation (510), and dividing by RNT,

j(i+«f4"=o.
Hence upon integration

Tv»(i+^) = constant (515),

or again, since T is proportional to pv,

pv 3(1+^) _ constant,

or j?wy = constant (516).

This is the general relation between pressure and volume in a motion of

the gas in which no heat enters or leaves the gas—a type of motion which is

known as " adiabatic."

Since /3 cannot be negative, we see from equation (515) that in adiabatic

motion an increase in v is accompanied by a decrease in T, and vice versa

—

a

gas necessarily cools on expanding, and is heated on being compressed.

263. Since the conduction of heat in gases is a very slow process, it

results that in many physical phenomena the rates of change are so rapid

that the temperature of the gas has not time to equalise itself Frequently

we may suppose that the process is so rapid that conduction of heat plays

no part at all, so that the change of each element of the gas may be treated

as adiabatic.

An instance of this is provided by the motions of the currents of air in

the lower strata of the atmosphere.

A second instance, of importance for our present problem, is provided by

the propagation of sound in a gas. The different elements of volume in

a gas undergo expansion and contraction as the waves of sound pass over

them—these expansions and contractions are readily seen to be too rapid for

the conduction of heat to be of any importance, and so the changes in each

element of gas obey the adiabatic law.

The velocity of sound, say a, is given by the well-known formula*

«V(I)'dp,

* See for instance Lord Rayleigh's Sound, ii. § 246.
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pose p 1

gives as the value of

and if we suppose p and p to be connected by the adiabatic law p = cp^, this

dp

dp'

ycp'

so that

^P . v-l P
dp

p
.(517).

Since observations on the wave-length of sound are effected with com-

parative ease, this equation provides a ready means of determining the value

of 7. It ought, however, to be particularly noticed that the equation is only

true for a gas which may be treated as perfect.

General Calculation of Specific Heats.

264. Let us now repeat the investigation of the specific heats of a gas,

without making the simplifying assumption that the gas is a perfect gas.

The relation between pressure, volume and temperature will be taken to

be the general relation found in equation (429),

p = Rvj,{p,)T (518),

and the equation of energy will be the general equation (491),

dQ = NdE+Rvb(p)Tdv (519).

For a change at constant volume, we obtain, as in § 258,

NdE=dQ = JG^NmdT,
so that, as before, _

(7„ = J^dEJm dT .(520).

For a change at constant pressure, the value of Q in equation (519) must
be put equal to JGpNmdT, giving

Using equation (518),

dv \

^L /peons.

and equation (621) becomes

dp

^^~Jm\dT N
dE R''^(p)dl^MPo)T]

.(522).

^K(Po)]

This equation is too complicated for any further discussion to be profit-

able in the general case. We may notice, however, that if we neglect the
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forces of cohesion, V},{p^ and Vb{p) become identical, and independent of the

temperature, so that equation (522) reduces to

°'--{-^^)J
;

'"'

If vi is further assumed to have the value assigned to it by Van der Waals,

and equation (523) becomes _

'--Ifr^l <^^*)'

which agrees exactly with the equation previously obtained for the simpler

case of an ideal gas.

Dependence of Specific Heats on Molecular Structure.

dF
265. The quantities -7™ or y8 (the two being connected by relation (511))

CbJ.

can only be evaluated when the internal structure of the molecule is known.

We have not sufficient knowledge of this internal structure to evaluate these

quantities directly, but their values can to some extent be determined from

a comparison of the specific heat formulae and the experimentally deter-

mined values of the specific heats, and the values obtained in this way

provide a basis for the discussion of the structure of molecules.

266. As an example of this procedure, we may examine the case of air

which for the moment, as frequently in the kinetic theory, may be thought

of as consisting of similar molecules.

For 7, the ratio of the specific heats, under a pressure of 1 atmosphere,

the following values have been obtained by Koch and others* :

Values of y for air at 760 mm. pressure :

^=-79-3°C., y= ]-405,

e= O'C, -y= 1-404,

6= 100° C, 7=1-403,

6= 500° C, 7= 1-399,

6= 900° C, 7=1-39.

These numbers shew that at this pressure 7 is almost independent of the

temperature, and approximately equal to 1|. Formula (514), namely

^ = i + 3(IT-^l
<'''>'

now shews that, under the same conditions, /3 is approximately constant, and

equal to f

.

* Kaye and Laby's Physical Constants (1911), or Recueil de Constantes Physiques (1913).
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Again the values of C„ for air at different pressures within the tempera-

ture range for 15° to 100" have been found by Joly* to be as follows:

Values of C^ for air (15° to 100° C.) :

p= 6-81 atmos., C„= 0*17202,

9-56 „ 0-17111,

13-56 „ 0-17193,

The formula for 6'p is

G,=w+^)r.,

jD= 14-53 atmos., C^= 0-17192,

23-35 „ 0-17223,

26-62 „ 0-17225.

R
.(526),

in which J= 4-184 x 10^ and Rjm = 287 x 10^ for air. Thus the value /3 = |

already found is seen to correspond to a value 0"1715 for C^, and this is near

enough to Joly's values to confirm the value yS = f throughout the range

covered by these experiments.

We therefore seem to be entitled to conclude, with some show of

probability, that over a large range of temperature and pressure /3 has

for air a constant value which is equal to about |.

267. When we pass outside this range, the values of /3 by no means

remain constant, as is shewn by the following sets of values for 7 at high

pressures

:

Values of 7 for air at high pressures.

e= -79-3°C. ^ = 0°C.

jo= 1 atmos.

25 „

100 „

200 -

„

7=1-405

1-57

2-21

2-33

y= 1-404

1-47

1-66

1-85

268. Generally speaking, it is found that for monatomic gases, and for

the more permanent diatomic gases, there exists a range of the kind we have

been considering, within which the specific heats remain approximately

constant. Frequently in the case of more complex gases no such range

appears to exist.

The following table gives values for 7, the ratio of the specific heats for

gases of both types:

* J. Joly, Proc. Roy. Soc. xli. (1886), p. 352 ; Phil. Trans. 182, A (1892), p. 73, and 185, A
(1894), p. 943.
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Values of 7.

203

Gas Observer Value of y Mean Value of /3 (calc.

from (525))

Mercury vapour .. Kundt & Warburg 1-666 1-666 •00

Krypton Rayleigh & Ramsey

Rayleigh
Ramsey
Niemeyer

1-666 1-666 •00

Argon 1-64

1-61

1-667

1-64 -04

Helium Travers
Behii & Geiger

1-652

1-63
1-64 •04

Hydrogen Lummer & Pringsheim
Dulong

1-408

1-394
1-401 •66

Nitrogen Masson 1-405 1-405 -65

Air (See § 266)

Lummer & Pringsheim
Dulong
Miiller

1-404 1-404 •65

Oxyaren 1-400

1-402

1-403

1-402 •66

Carbon-monoxide, .

.

Leduc
Dulong

Wullner (atO°C.)

„ (at 100" C.)

1-401

1-410

1-403

1-397

1-403 -66

Nitric oxide Masson

Masson
Strecker
Miiller

1-394

1-392

1-394

1393

1-394

1-393

•69

•69

Hydrochloricacid . .

.

Carbon-dioxide Leduc (at 0° C.)

„ (at 100° C.)

1-3190

1-2827
— —

Nitrous oxide Masson
Wullner (at 0°C.)

„ (atl00°C.)
Leduc

1-270

1-311

1-274

1-324

— —

Chlorine Strecker

Martini

1-323

1-336
1-33 1-02

Ethylene Wullner (at 0° C.)

„ (at 100° C.)

1-245

1-189
—

CfiHioO Lechner 1-31

Lechner 106 — —

269. We shall not discuss the significance of this table until we have

first examined the evidence provided by the values of Gp. It will be noticed

that if the value of G^„ could be obtained experimentally, it would give us
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more direct information as to molecular structure, but the quantity Cp is

much more easily determined in the laboratory, and this, in virtue of relation

(508), is practically equivalent to determining Cy.

A great number of methods of determining specific heats rest upon

measuring the heat required to produce a certain elevation of temperature,

and this elevation, to give a result which is to be large enough to be measur-

able with accuracy, must itself generally be large. Such experiments cannot

give the specific heat at any given temperature : they give only the average

specific heat at all temperatures within a given wide range. Some methods,

however, such as for instance the so-called continuous electric method*, not

only give the specific heat averaged only through a very small range of

temperature but give it with very great accuracy. Also measurements taken

through a wide range of temperature will naturally give the true value of

the specific heat for a gas of which the specific heat does not vary greatly

with the temperature. The following table gives some values of Gp observed

by accurate experimenters

:

Values of Cp at a pressure of 1 atmosphere.

Gas Temperature Observer Value of Cp
RjJm

(from p. 131)

Value of /3 (calc.

from (513))

Helium -15°
50°

100°

150°

- 15° to 150°

20° to 50°

20° to 75°

20° to 100°

16°

- 76°

-181°

20°

20°

20°

100°

20°

0°

20°

50°

100°

Eggertt

»

Mean of above t

EscherJ

»

11

Scheel & Heuse^i

11

11

11

11

Swann
||

11

Scheel & Heuse §

Holborn & Henning^
Swann

II

Holborn & HenninglT
Swann

II

1-2645

1-2648

1-2696

1-2630

1-2662

3-4216

3-4212

3-4226

3-403

3-157

2-644

0-2492

0-2406
0-24173
0-24301

0-2182

0-2010
0-20202
0-2095

0-22141

•4977

•985

•0709

•0685

•0620

•0452

•030

•648

•637

•470

•123

•677

•675

•686

•698

•680

1^296

Hydrogen

Nitrogen

Air

Oxygen

Carbon-dioxide. .

.

* W. G. Swann, Phil. Trans. 210, A, p. 199.

t Ann. d. Phys. xliv. p. 64.5.

X Ann. d. Phys. xlii. p. 761.

§ Ann. d. Phys. xxxvii. p. 79 and xl. p. 473.

II
Phil. Trans. 210, A, p. 199.

M Sitzungsber. d. k. Akad. d. Wissen. 1905, p. 175.
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These tables will confirm the truth of the statement made above that for

the monatomic and more permanent gases there is a range of temperature

and pressure over which the ratio /8 is very approximately constant. It

appears moreover that the various values of /3 tend to cluster approximately

round certain fixed values. For instance ^ is nearly equal to zero for all the

monatomic gases, namely mercury, krypton, argon and helium ; it is nearly

equal to | for a number of diatomic gases, namely hydrogen, nitrogen, oxygen,

carbon-monoxide and others.

270. The energy of a molecule will consist always of three squared

terms representing the kinetic energy of motion, to which may be added

any number of other terms representing energy of rotation, of internal

vibration, etc.

Let us consider a molecule having, in its energy, n squared terms in

addition to the three representing its kinetic energy of motioh, so that

E = \m{u'^-v^ + w-')-^\a,<^^^ + ^a^<^i+...+^an(l>n'' (527).

The mean value of each squared term is, as in § 155, equal to ^RT,
so that _

E=-lRT{Z + n) (528),

and comparing this with the mean value assumed for E in equation (510),

namely
E=-^RT{1 + ^) (529),

we at once see that n = 3/8.

This immediately gives a simple explanation of the tendency for the

various values of /8 to cluster round the values /3 = 0, f, etc., for it appears

that these are exactly the values which correspond to integral values of n.

In other words, these values are just such as would be expected on the

hypothesis that the molecular energy is of the form (527).

For a gas of which the molecular energy is of the form expressed by

equation (527), formulae (526) and (525) become

C. = M3 + ^);^ ^^^^>'

7=l + o-|- (531)-
3 + 71

Monatomic Gases.

271. There are four gases in the table, namely mercury, krypton, argon

and helium, for which, very approximately, 7 = If and w = 3. For these gases,

then, there is no molecular energy except that of translation. This seems

to indicate that the molecules of the gas must be very approximately spherical

in shape, and spherically symmetrical as regards internal structure. For if
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this were not so, an appreciable fraction of the translational energy of the

molecule would be transformed into rotational energy at each collision. It is

true that we might, going beyond the physical hypotheses which have so far

been under consideration, suppose that the rotational energy became dissipated

by radiation into the ether, but we should then be faced by the following

dilemma. If on the one hand we assumed the rate of dissipation of transla-

tional energy to be slight, we could not explain the value /3 = 0, while if we
assumed it to be rapid, we should be led to results inconsistent with the

observed slowness of loss of energy of a gas as a whole.

We must then conclude that the molecules of these substances are

spherical, or that, if they are not actually spherical, they behave like

spherical bodies as regards their inability to acquire rotational energy by

collision. It seems to follow that the molecules of these gases cannot be

composed of two or more atoms, and it may therefore be concluded that the

substances are monatomic. This is of course the view generally accepted by

chemists. It is true that it rests primarily, in the case of krypton, helium

and argon, upon the observed value of 7, but it also accords well with the

chemical inertness of these substances.

The values 7 = If ,
/S = are not however fully explained by the supposi-

tion that the molecules behave like spherical bodies. For these molecules

are believed to have a structure of considerable complexity, whatever their

effective shape may be. The helium atom for instance is believed, on almost

incontrovertible evidence, to be made up of three parts—a positive nucleus,

which is identical with the c<-ray particle of radioactivity, and two negative

electrons. The helium atom made up in this way must, as a matter of

geometry, have six degrees of freedom in addition to its three degrees of

freedom of motion in space. It will be sufficient to remark here that the

evidence of the specific heats indicates that these six degrees of freedom must

be ankylosed, in the sense explained in § 77, so that their energy is zero or

negligible. The reason why this is so will become apparent later.

272. After n = 0, the next value theoretically possible would be n=\,
giving 7=1^. In the table on p. 203 there is no gas for which n = 1, (yS = ^),

and there is no gas known for which /3 and 7 have these values, even approxi-

mately. This, however, upon closer examination, might be regarded as

additional confirmation of the truth of the kinetic theory. For, as a matter

of geometry, a body, if not spherical, can either have one axis of symmetry,

in which case its surface is a figure of revolution, or none at all. In the

former case the energy of one of the three momentoids arising from the

rotation might disappear; in the latter case none of them could disappear.

Thus the rotation might contribute either two or three squared terms to the

energy, but could not conceivably contribute only one. It is impossible,
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then, to imagine a molecule having in all four squared terms in its energy, of

which one represents energy of rotation. It is equally impossible to imagine

a spherical molecule having four terms in its energy, one of which represents

any kind of internal motion, for no motion can be imagined having only one

term in its energy— the simplest internal vibration involves two terms, one

kinetic and one potential. Thus a molecule for which n=\ is an impos-

sibility, and the value 7 = 1|^ cannot be expected to occur for any type

of gas.

Diatomic Gases.

273. After n = 0, then, the next value theoretically possible will be

n = 2, giving 7 = 1|, and capable of being produced by a molecule possessing

symmetry about an axis, this symmetry being one both of shape and

structure, so that no rotation about this axis will be set up by collisions.

From the table it appears that n and 7 have very approximately these

values in the case of air, of the elements hydrogen, nitrogen and oxygen,

and of the gases CO, NO and HCl. These molecules are all diatomic, so

that the structure which our theory indicates is fully in agreement with

what we should expect. A molecule symmetrical about an axis as regards

both shape and structure could obviously be formed by the conjunction of two
spherical atoms. It might also conceivably be formed by two .atoms which
were themselves not spherical, but each of which was symmetrical about an
axis, the axes coinciding with that of the molecule as a whole. The original

shape of the atoms, whether spherical or not, will possibly be lost when
the atoms are placed under the influence of each other's forces, but there is

nothing to destroy the symmetry about the single axis of figure of the whole

molecule.

The two terms representing energy of rotation will not in general be the

only terms in the energy of a diatomic molecule, for there will be a degree

of freedom representing the capability of the atoms to change their relative

distance apart, and this gives rise to two more squared terms in the energy,

one the kinetic and the other the potential energy of a vibration in which
the two atoms move along the line of centres. If the two squared terms in

the actual energy arise fi-om the rotation of the molecule, this vibration

must contribute nothing, so that the degree of freedom must be ankylosed.

It is however quite conceivable that the two actual squared terms in the

energy may come from the vibration, and that the energy of rotation may
contribute nothing, as in the case of monatomic gases,

274. Whichever is the true origin of these two terms, it will be noticed

from the table on p. 204 that the energy represented by them falls off

rapidly as the temperature falls in the case of hydrogen, and it seems
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probable from the experiments of Eucken* that at the absolute zero of

temperature all diatomic gases have no molecular energy except that of

translation, and so behave like monatomic gases, having the values /3 =
and 7 = If . We shall return to a discussion of this remarkable fact later.

More complex Gases.

275. The next value possible is n + 3 = 6, giving 7 = 1^. This is

obviously the value which ought to be found for a gas in which the molecules

may be regarded as rigid bodies, having no axis of symmetry. We might

reasonably have expected all triatomic molecules and molecules of higher

atomicity to be of this type.

It is, however, quite clear from experiment that for many gases the

value of 7 is very much lower than 1|. In other words, whatever may be

the case with diatomic gases, there are many substances whose molecules

must not be regarded simply as rigid bodies, since the energy of internal

motion is comparable with the energies of translation and rotation.

276. Various attempts have been made to connect the values of n and 7
with the number of atoms in the molecule. Naumannf, for instance,

suggested that n is identical with the number of atoms in the molecule,

while J. J. Thomson J suggested that in the special case of a symmetrically

arranged molecule, n + S might be found to be proportional to the number

of atoms in the molecule.

The experiments of Capstick§ have, however, shewn quite conclusively

that no general law can be expected to relate 7 with the number of atoms,

independently of the nature of the atoms. For instance, he finds the follow-

ing values for the methane derivatives

:

7 n + S

Methane CH4 1-313 6-4

Methyl chloride CH3CI 1-279 7-2

Methylene chloride CH2CI2 1-219 9-0

Chloroform CHCI3 1-154 13-0

Carbon tetrachloride CCI4 1-130 15-4

and somewhat similar values for n can be deduced from Regnault's deter-

minations of Gp for this series.

Thus the introduction of the series of chlorine atoms increases n very

perceptibly at every step.

A similar result was obtained by Strecker||, who found that hydrochloric,

* Sitzungsber. d. k. Akad. d. Wissen. 1912, p. 141.

t Annalen der Chemie, 143 (1867), p. 284.

X Watts' Dictionary of Chemistry, i. p. 89.

§ Phil. Trans. 186 (1835), p. 564 ; 185 (1894), p. 1.

II
Wied. Ann. xiii. p. 20 and xvii. p. 85.
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hydrobromic, hydriodic acids all have approximately the same values as

hydrogen, namely
7=1-4, n+3 = 5,

while for chlorine, bromine and iodine, the values are approximately

Chlorine 7 = 1-333 ?i + 3 = 6,

Bromine, Iodine 7 = 1*293 w + 3 = 6-8.

Similarly for the iodides of bromine and chlorine,

Bromine iodide 7 = 1 '33 n + 3 = 6,

Chlorine iodide 7=1-317 /i + 3 = 6-3.

From these figures it appears that one halogen can be put in the place

of hydrogen without producing any difference in the values of 7 and n, but

that the substitution of the second halogen atom causes a marked increase

in n. Capstick* finds a similar phenomenon in the case of the paraffin

derivatives. In general the second chlorine atom introduced into the

molecule causes a large change, although the first may or may not do so.

These facts suggest that the problem of determining a relation between

the value of n and the structure of the molecule is one of extreme com-

plexity, and moreover that it is a problem for the chemist rather than for the

mathematician.

Molecular aggregation.

277. The discussion of the physical properties of gases given in this and

the preceding chapter has been based upon, the supposition that a gas can be

regarded as a collection of separate dynamical systems, namely molecules,

each of which retains its identity through all time. As a close to this dis-

cussion, we may examine what changes are to be expected if the supposition

is regarded as an approximation to the truth only, and not as being wholly

true. We shall first consider what complications are introduced by the

possibilities of molecular aggregation, leaving the discussion of the converse

process of dissociation until later.

278. We have already seen that there must be a small attractive force

between those molecules in a gas which are sufficiently near to one another,

or, more precisely, that the potential energy of the total intermolecular forces

in a gas is negative.

This result, it is worth noticing, is intelligible without assuming that

there is any definitely attractive force inherent in a single molecule. In § 117

we obtained as the laws of distribution for those molecules which were free

* /.c. ante.

J. G. 14
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from intermolecular force and for those molecules which were under the

influence of intermolecular force, equations of the forms

T„, = ^2g-2M£'a+^'a+»r„„) (532)^

etc.

it being sufficient for our present purpose to consider a gas in which only one

kind of molecule is present, i.e. a gas which is chemically pure. In the above

equations Waa is the potential of the intermolecular forces between the two

molecules. If we denote the potential of the intermolecular forces between

three molecules by Waa.a, and so on, we obtain as the total intermolecular

potential energy of the gas,

• +^3ff ...Tra„ae-2'^(^-"'^'-+^"-+^-«M|i(^^2... + etc (533),

where the integrations extend over all configurations in which the inter-

molecular forces are appreciable. Now if, when the configuration of two

molecules is selected at random from all possible configurations, Waa. is as

likely to be positive as negative, then the whole of the first integral can be

expressed as a sum of terms of the form

this term being obtained by combining two configurations in which the

values of Waa are equal in magnitude but opposite in sign. This expression

is, however, negative for all values of Waa- The second integral can be

similarly treated, so that we arrive at the final result that <t> is negative.

Degree of Aggregation.

279. We may now simplify the problem by regarding molecules as

point-centres of force, acting on one another with a force depending only on

their distance apart. The chance of finding a free molecule of class A inside

an element of volume dxdydz is now, by equation (532),

Ae'^'^''^ dudvdwdxdydz (534),

while the chance of finding two molecules of classes A and B in adjacent

elements dxdydz and dx'dy'dz is

j^2g-/u»(c2+c'i)-2/t* dudvdwdxdydzdu'dv'dw' dx'dy'dz'.

If we take the element dx'dy'dz' to be a spherical shell of radii r and

r + dr surrounding the centre of the first molecule, this last expression

becomes
A^e-^'^^''''+''"'^-^''* dudvdwdu dv'dw' 4>7rr'^drdxdydz,
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^ being a function of r. If, as in § 33 (p. 35), we use the transformations

M = \{u-\- u') etc., a=u' — u, etc.,

and write

u« + v2 + w=' = c2, a2 + y82 + 72=F2,

we can transform the foregoing expression into

A'e-'^^'^^'dvidvdvrdxdydze-^'''^^^-^^'^ dad^djAtTrr^dr (535).

The first factor after the A^ expresses the law of distribution of transla-

tional velocities for a double molecule. It is exactly the same as if each double

molecule were a permanent structure of mass 2m. The remaining factors

express the distribution of those coordinates which may be regarded as

internal to the double molecule.

280. Throughout the motion of a double molecule, so long as it is undis-

turbed by collisions, c^ will remain constant, so that from the energy equation

it follows that ^mV^+ 2^ remains constant. The possible orbits which the

component molecules can describe about their common centre of gravity

fall into two classes, according as they pass to infinity or not. Analytically

these two classes are differentiated by the sign of ^mV^+2"^. Double

molecules for which ^mV^ + 2^ is positive consist of two molecules which

have approached one another from outside each other's sphere of action, and

which after passing once within a certain minimum distance of each other,

will again recede out of each other's sphere of influence. On the other hand,

double molecules for which ^mV^+ 2^ is negative consist of two molecules

describing orbits about one another, these orbits being entirely within the

two spheres of action, and this motion continues except in so far as it is

interrupted by collisions with other molecules. It is clear that double mole-

cules of the first kind are simply pairs of molecules in collision. In discussing

molecular aggregation we must confine our attention to double molecules of

the second kind, i.e. those for which ^mV^+2'^ is negative. It is to be

noticed that double molecules of this kind cannot be produced solely by the

meeting of two single molecules. It is necessary that while the single mole-

cules are in collision something should happen to change the motion—in fact

to change the sign of ^mV^+ 2"^. This might be effected by collision with

a third molecule, or possibly if ^mV^+ 2^ were very small at the beginning

of an encounter, sufficient energy might be dissipated into the ether for

^mV^+2'¥ to become negative before the termination of the encounter.

We may leave the consideration of this second possibility on one side for the

present, with the remark that if this were the primary cause of aggregation,

we should no longer be able to use the equations with which we have

been working, since they rest upon the assumption of conservation of

energy.

14—2
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281. Integrating expression (534) over all values of u, v and w, we find

for Vi, the molecular density of uncombined molecules,

-. = ^(s)' ^'''^-

Similarly, if v^ is the molecular density of double molecules, we obtain by

integration of expression (535),

^^ = ^2 [-^y [[ [
[ e-MimF=+2*] dad^dy4^7rr'dr

= A^(^Y i i e-''^i'^^'+-'*nQ7r'V'r'dVdr (537),

in which the integration extends over all values of V and r for which

^mV^+2'^ is negative.

The total number of constituent molecules per unit volume is

v = Vi + 2v2 + Sv3+ ...

= i,7l + A !!e-^^i'''V^+^*nQ7r'V'r'dVdr + A'{...) + ...] (538),

so that if we denote the fraction of the whole mass which is free by q,

we have

« = - = 3-77 (539)-

V 2 .' j

Eliminating A from equations (536), (537), etc., we obtain a series of

relations of the form

v, = v,'^lr{T), etc.) ^ ^'

where ^, 1/^, ... are functions of the temperature only.

Equations of this form are the basis of practically every theory of

aggregation and dissociation*.

To study the variation of aggregation with temperature a knowledge of

the exact form of the functions <f){T), y^{T), etc. is necessary, but we can

examine the dependence of aggregation on density without this knowledge.

* Compare, for instance, Boltzmann's Theory, Wied. Ann. xxxii. p. 39, or Vorlesungen Uher

Gastheorie, ii. § 63 ; Natanson's Theory, Wied. Ann. xxxviii. p. 288, or Winkelmann's Handbuch d.

Physik, III. p. 725, or the theory of J. J. Thomson, Phil. Mag. [5] xviii. (1884), p. 233. These

theories are based on widely different physical assumptions, but all lead to equations of the same

general form as (540). The difference of the physical assumptions made shews itself in the

different forms for the functions </> {T), etc.
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Dependence of aggregation on Density.

282. For a number of substances, it is believed that no greater degree

of aggregation occurs than is implied in the formation of double molecules.

For such substances

v = Vi + 2v2.

Neglecting the Van der Waals' corrections, the pressure is given by

(of. § 160)

p = RT{v, + V2) = ^RT {v + v,) = )^RvT{\+q) (541),

where q is introduced from equation (539). Thus it appears that q, the

fraction of the whole mass which is free, can be readily obtained from readings

of pressure and temperature.

The following table gives the values of 1 — g- calculated in this way from

the observations of Natanson* on the density of peroxide of nitrogen

:

Aggregation of NOo.

Valueof 1-3 =—

2

Temp.

23 = 115 mm. 2> = 250 mm. p= 580 mm. p= 760 mm.

^=-12-6° 0-919

e= 0° 0-837 0-901 — —
e= 21° — — 0-824 —
e= 49-7° 0-253 0-370 0-550 —
e= 73-7° 0-084 0-149 0-263 —
6= 99-8° 0-031 0-050 0-093 0-117

6= 151-4° i n ap pre c i a b le

In this case the single molecule is NO2, the double molecule is N2O4, and

more complex structures are supposed not to occur. The value of 1— g is

21/2/1/, and so measures the proportion by mass which occurs in the form N2O4.

Equation (540) now predicts that the ratio of v^ to Vy^ ought to be the

same for all readings at the same temperature. We have from this equation

1 _ V _ I'l + 2i/2

q vi Vy
= l + 2p,cf>(T),

so that

or \-q = 2q^v4>{T).

* Recueil de Constantes Physiques, p. 168.
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Combining this with equation (541) we obtain

shewing that the ratio ^- ought to be the same for all readings at the

same temperature.

The following table, calculated from the observations in the table of

p. 213, will shew to what extent this prediction of theory is borne out by-

experiment :

Aggregation of NOo.

Temp.

Value of l-f =
^t(^)pq- RT

p=\lo mm. ^= 250 mm. jj = 580 mm. ^=:760 mm.

^= 49^7°

^= 73^7°

^= 99-8°

•689

•167

•056

•608

•152

•043

680

•145

•037 •037

Dependence of aggregation on Temperature.

283. It has been seen that

q^" RT '

where, from equations (536) and (537),

<^(r) = i^^=
^l^y [j

e-Mi»«F^+2*] IQjr'V'r'^dVdr (542).

The exact relation of the degree of aggregation to the temperature

accordingly depends on the evaluation of the function
(f)

(T), and so involves

a difficult problem.

In general terms we can easily see that at high temperatures (h very

small) the value of cf) (T) will be insignificant, while after it becomes

appreciable, it must be expected to increase rapidly with falling temperature.

Our knowledge of the structure of matter is not sufficient to enable us

to evaluate </> (T), as given by equation (542), with precision. Progress can

only be made by the introduction of simple hypotheses as to the interaction

of molecules, which may prove to lead to results near to the truth.

Boltzmann* assumes that potential energy exists between two molecules

only when the centre of the second lies within a small and clearly defined

* Vorlesunyen ilber Gaatheorie, ii. chap. vi.
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region which is of course fixed relative to the first, and that when the second

molecule has its centre within this " sensitive region," the potential energy

has always the same value "^. This region does not necessarily consist of a

spherical shell, but if w denotes its total volume, equation (542) may be

written in the form

<^(^=(5̂ "y (oe-^^^ je-i^»'V'4>7rV'dV,

where a replaces the integral 47r r^dr, which has represented the extent of

the "sensitive region" in our analysis. If we replace ^hmV^ by of, this

equation may be expressed in- the form

6 (D =^ 6-2^^* e-^'^x'^dx (543).

The upper limit of integration is determined by the condition that

^mV^+ 2^ shall vanish, and is therefore given by p= — 2^"^, the value of

^ being necessarily negative. If we put — "^ = R^, so that yS is positive,

the value of ^' is 2hR^ or fi/T.

For some substances "^ may be so large that a good approximation can

be obtained by taking the integral in equation (543) between the limits

a; = to x= CO (cf. § 290, below). In this case the integration is readily

effected, and we find
*_ £

in which ^ is negative. The degree of dissociation is then given by

J=i+^^^' (^*^)'

which is Boltzmann's formula for molecular aggregation and dissociation.

Numerical values, obtained by the comparison of this formula with experi-

ment, are given by Boltzmann*.

Willard Gibbsf also has treated the subject by a method which, although

at first appearing very different from that of Boltzmann, will be found, as

Boltzmann remarks]:, to rest ultimately upon exactly the same physical basis,

and so leads necessarily to essentially the same equations.

The following table given by Willard Gibbs contains the densities of

peroxide of nitrogen observed at various temperatures by Deville and

Troost§, the pressure being one atmosphere throughout, and also the values

calculated from equation (544).

l.c. § 66.

t Trans. Connecticut Acad. in. p. 108 (1875) and p. 343 (1877) ; Silliman Journal, xviii. (1879),

p. 277. Also Coll. Works, i. pp. 55 and 372.

J Vorlesungen ilber Gastheorie, ii. p. 211.

§ Comptes Rendtis, lxiv. (1867), p. 237.
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Aggregation of NOo.

Temperature
Density
(observed)

Density
(calc.)

Temperature
Density

(observed)

Density
(calc.)

183-2 1-57 1-592 80-6 1-80 1-801

154-0 1-58 1-597 70-0 1-92 1-920

135-0 1-60 1-607 60-2 2-08 2-067

121-5 1-62 1-622 49-6 2-27 2-256

111-3 1-65 1-641 39-8 2-46 2-443

100-1 1-68 1-676 35-4 2-53 2-524

90-0 1-72 1-728 26-7 2-65 2-676

For other substances ^ may be so small that a good approximation can

be obtained by expanding in powers of |. By repeated integration by parts,

we obtain the expansion

Jo
*^ ll.3 + 1.3.5 + 1.3.5.7 + '-j'

which is convergent for all values of ^. Using this equation, (543) becomes

<i>{T)
4w /y8\t (1 2/3

+ ^'^ + ^(f)V...}.^JirKT) 13 ' 3.5r ' 3

Another possible expansion, also convergent for all values of ^, is

1 _ 1

1.5

leading to

(^ 1

4tW /yS\l (1

1.2.7

1 B

r- 1.2.3.9 f +

(^

Jager* gives a table, taken from Neumann f, shewing that the dis-

sociation of hyponitric acid between temperatures of 27° C. and 135° C.

can be well represented by assuming that ^(T) is proportional to

A theory is given leading to this form for (l>(T), but it is not consistent with

the dynamical principles given in the present book.

* Winkelmann's Handbuch der Phtjsik, Vol. in. (Warme). Article, "Die Kinetische Theorie

der Gase," p. 731.

t Neumann, Thermochemie, p. 177.
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Continuity of Liquid and Gaseous States.

284. We have seen that, at very high temperatures, the series (538)

reduces to its first term, so that q = 1, and there are no molecules in

permanent combination.

At lower temperatures h is greater, so that not only is A greater, but the

exponential e-^Li»«T'2+2*], in which it will be remembered that the index

is always positive, is also greater. The relative importance of the later

terms of the series (538) is therefore greater. Finally, we reach values

of the temperature for which h has so great a value that the series (538)

becomes divergent. At this point the molecules tend, according to our

analysis, to form into clusters, each containing an infinitely great number

of molecules, or, ultimately, into one big cluster absorbing all the molecules.

By the time this stage is reached the analysis has ceased to apply, as the

assumption that the molecular clusters are small, made in § 117, is now

invalidated. It is, however, easy to give a physical interpretation of the

point now reached : obviously it is the point at which liquefaction begins,

and the collection of molecular clusters is a saturated vapour.

Regarded as a series in terms of A, the series (538) is a power series

in ascending powers of A. Thus for a given value of h, say ho, there is

a single value of A, say Aq, such that the series is convergent' for all values

of A less than ^o and is divergent for all values of A greater than A^.

In other words, corresponding to a given temperature, there is a definite

density at which the substance liquefies. This of course is the vapour-

density corresponding to this temperature. Clearly as h increases, A
decreases, and conversely, so that an increase of pressure is accompanied

by a rise in the boiling-point of the substance.

Since A depends on v, the relation between corresponding values ho, Aq

which has just been obtained may be expressed in the form

f{v,T) = (545),

expressing the relation between v and T at the boiling-point of a liquid.

The Critical Point.

285. It has already been noticed that for very small values of h, Vj and

V become identical, so that the series (538) cannot become divergent. Thus

for very high values of T equation (545) can have no root corresponding

to a physically possible state. Let Te be the lowest value of T for which

a root of equation (545) is possible, then Tg will be a temperature above

which liquefaction cannot possibly set in, no matter how great the density

of the gas ; in other words, Tc is the critical temperature.
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From ordinary algebraic theory, it appears that there must be two

coincident values of v given by equation (545) to correspond to the critical

temperature T^, agreeing with what is already known as to the slope of the

isothermals at the critical point.

Pressure, Density and Temperature.

286. It will now be clear that when a gas or vapour is at a temperature

which is only slightly greater than its boiling-point at the pressure in

question, it cannot be regarded as consisting of single molecules, but must

be supposed to consist partly of single molecules and partly of clusters of

two, three or more molecules. If m is the mass of a single molecule, and

if Vi, V2, Vs, ... have the same meaning as before, the density is given by

p = m (i/j + 2i/2 + 3^3+ .. .).

In calculating the pressure, we must treat each type of cluster as a

separate kind of gas, exerting its own partial pressure. We accordingly

obtain for the pressure, as in § 160,

1 / , , , X P^'T f z/i + ''2 + 1/3+... \

2Ai. m \vi + zv2 + Svs+ ...J

From a comparison of this equation with equation (341), remembering

that Vi, V2, ... are functions of T and p, it is clear that neither Boyle's Law,

Charles' Law nor Avogadro's Law will be satisfied with any accuracy.

287. The observed deviations from the laws obeyed by a perfect gas

must of course be attributed partly to aggregation, as has just been explained,

and partly to the causes which have already beeii discussed in Chapter VI.

The two sets of causes are not, however, altogether independent ; so that it

is not sufficient to consider the effects separately, and then add. The state

of the question is, perhaps, best regarded as follows.

The effect of the forces of cohesion is too complex for an exact mathe-

matical treatment to be possible. We have therefore, in Chapter VI and

the present chapter, examined their effect with the help of two separate

simplifying assumptions. In Chapter VI, following Van der Waals, we
regarded the gas as a single molecular cluster containing an infinite number

of molecules ; and in replacing the whole system of the forces of cohesion by

a permanent average force, we virtually neglected the effect of any formations

of small clusters inside the large cluster. In the present chapter, on the

other hand, we have been concerned solely with the formation of small

clusters, and have disregarded the large cluster altogether. As a conse-

quence of the omission of the former treatment to take account of the

formation of small clusters, this treatment led to the erroneous result

(equation (477)) that the internal pressure is exactly proportional to the

temperature, whereas as a consequence of the omission of the present
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treatment to consider the clustering of the gas as a whole, we are led in

the present chapter to the erroneous conclusion that the internal pressure is

identical with the boundary pressure. The situation may then be summed

up by saying that the treatment of Chapter VI considers only the tendency

to mass-clustering, while that of the present chapter considers only the

tendency to molecular-clustering.

So long as the deviations from the behaviour of a perfect gas are small,

the two tendencies may be considered separately, and the total deviation

regarded as the sum of the two deviations caused by these tendencies

separately. On the other hand, as we approach the critical point the

phenomena of mass-clustering and molecular-clustering merge into one

another and ultimately become identical at the critical point. The two

effects are no longer additive, for each has become identical with the whole

effect.

It must be borne in mind that we have only found an exact mathe-

matical treatment of either effect to be possible by making the assumption

that the effect itself is small. In other words, so far as our results apply, the

effects are additive. It may be noticed that the deviations from the laws of

a perfect gas, which were discussed in Chapter VI, fell off proportionally to

rj, and jj^, whereas the deviations discussed in the present chapter fall off

much more rapidly as the temperature increases.

Galorimetry.

288. It is clear that the formulae which have been obtained for the

specific heaj)s may be greatly affected by the possibilities of molecular

aggregation. For in raising the temperature of the gas work is done not

only in increasing the energy of the various molecules, but also in separating

a number of molecules from one another's attractions. This latter work will

involve an addition to the values of Cp and C^ such as was not contemplated

in the earlier analysis of §§ 257—261. We should therefore expect the values

of Gp and G^ to be in excess of the values obtained from our earlier formulae,

throughout all regions of pressure and temperature in which molecular

aggregation can come into play. For instance, the specific heats of nitrogen

peroxide have been studied by Berthelot and Ogier*, who give the following

values for Cp

;

From 27° to 67°, Gp = 1-62,

27° to 100°, 1-46,

27° to 150°, 1115
27° to 200°, 0-85,

27° to 300°, 0G4.

* Bull. Soc. Ghimie, [2], xxxvii. (1882), p. 434 ; Comptes Eendm, xcn. (1882), p. 916 ; Ann.

d. Ghimie et Physique, [5], xxx. (1883), p. 382 ; Recueil de Constantes Physiques, p. 108.



220 Physical Properties: Calorimetry, etc. [ch. vii

The excess in the values of Gp at the low temperatures may be reasonably

attributed to the work required to separate molecules of N2O4 into pairs of

molecules of NOg.

As a further illustration of a somewhat different nature we may take the

case of steam. Wet steam is steam in which large molecular clusters occur,

dry steam is steam in which the molecules are all separate, and our quantity

q measures what engineers speak of as the dryness of wet steam. For the

value of 7 for wet (saturated) steam, Rankine and Zeuner give respectively

the values 1"0625, 1"0646. For dry steam (" steam gas ") the recognised

value is 1'30. If we used the formula

2

for the calculation of n, we should come to the conclusion that w + 3 had the

value 32 for wet steam, and 6'6 for dry steam.

The large value of n in the former case is fully in keeping with the

existence of large clusters of molecules, so large that each has about

32 degrees of freedom.

Dissociation.

289. So far as the mathematical analysis goes, there is nothing in the

preceding treatment to prevent it being applied to dissociation. The former

molecules must be replaced by atoms, and the former clusters of molecules by

single molecules.

Let us consider a gas in which the complete molecules are each composed

of two atoms, of types a, /8 respectively.

As in equations (532) the laws of distribution of dissociated atoms and

complete molecules are

where ^ is the potential energy of the two atoms forming the molecule.

The analysis will be simplified, and the theory sufficiently illustrated, by

regarding the atoms as point centres of force, of masses which will be

supposed to be mi, Wg respectively. Thus we obtain as the laws of dis-

tribution of dissociated atoms

[ (546),
Be-^'^^''dudvdw)

and as the law of distribution of complete molecules

ABe-^'^'^'+'^^^'dudvdwe ""+'"» dadlBd^^TTr^dr (547),
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the law being arrived at in the same way as the law (535), except that the

scheme of transformation of velocities must be taken to be

u = —^ =— , a = u —u, etc.,
mi + m-z

this being a generalisation of the transformation previously used (cf § 362,

below).

290. Although the mathematical analysis is similar to that of aggregation

there is an important difference in the physical conditions. The law of

distribution (547) is limited to values of the variable such that

mi+ mg

is negative ; as soon as this quantity becomes positive the molecule splits up

into its component atoms. Now in the case of molecular aggregation, the

attraction between complete molecules is not great, so that "^ is a small

negative quantity, and the range of values for V is correspondingly small.

In the case of chemical dissociation ^ is a large negative quantity, and the

range for V is practically unlimited.

Thus in the theory of § 283, the former of the two evaluations of <^ (7"),

namely that which assumes "^ to be very large, will in general be suited to

problems of true dissociation, and the latter to problems of aggregation.

An estimate of the value of ^ can be formed by considering the amount
of heat evolved when chemical combination takes place. For instance

when 2 grammes of hydrogen combine with 16 grammes of oxygen to form

18 grammes of water the amount of heat developed according to Thomsen's

determination, is 68,376 units,— sufficient to raise the temperature of the

whole mass of water by 3,600° C. The value of V necessary for dissociation

to occur is therefore comparable with the mean value of V at 3,600° C, and

these high values of V will be very rare in a gas at ordinary temperatures.

The exclusion from the law of distribution (547) of high values of V will

therefore have but little effect either on the law of distribution or on the

energy represented by the internal degrees of freedom, and we may, without

serious error, regard the law of distribution as holding for all values of V.

In such a case, it appears that the molecule may be treated exactly

as an ordinary diatomic molecule, supposed incapable of dissociation, but

possessing six degrees of freedom, three translational degrees represented

by the differentials dudvdw, and three internal degrees represented by the

differentials dad^dy.

Since there are six degrees of freedom, the value of 7, even if we neglect

potential energy, will be as low as 1^, and will be even less if potential

energy be taken into account. We have, however, seen that for diatomic
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molecules 7 is fairly uniformly equal to 1|, and this suggests that the normal

diatomic molecule may not be regarded as constituted of two atoms combined

in the way we have imagined.

291. We notice that a, /3, 7, the components of V, enter similarly into

the law of distribution (547), so that all directions are equally probable for

the velocity of either atom relatively to the molecule as a whole. There is

no tendency for the atoms to fall into circular orbits.

The internal kinetic energy of the atom can be expressed in the form

jnwm^ y^^ m^nH_
^ ^^^, ^ ^, ^.^^ ^

•

rrii +7)12 m^ + m^

where r, 6,
<f)

are the polar coordinates of either atom referred to the other

as origin.

Thus if the law of distribution (547) were true, we should have as average

values, as in the theorem of equipartition of energy,

where m is the mass of the whole molecule. Thus r would be comparable

with C. The value of r increases and decreases as the apses of the orbit

are described ; we again see the absence of any tendency to circular orbits,

and obtain an insight into the extreme rapidity with which r changes.

A physical consideration ought to be taken into account here, which had

no application to the previous case of molecular aggregation. The atomic

or electronic constituents of the molecule are electric systems, and according

to the classical electrodynamic theory, such systems when in acceleration,

emit radiation and so lose energy. According to the law of distribution

(547), there will certainly be violent acceleration of the electrically charged

atoms, for the average value of r has been seen to be great, and this velocity

changes its direction repeatedly within lengths comparable with molecular

dimensions.

Thus a system of molecules having internal motions such as are specified

by the law of distribution (547) will radiate energy freely. The main

analysis on which formula (547) is based has, however, assumed conser-

vation of energy, and so is not applicable to the present case. Thus this

formula falls to the ground, because its consequences are incompatible with

the premisses from which it was derived.

292. We might attempt to treat the molecule, so far as its internal

motions are concerned, as a non-conservative system. It could be shewn, as

in § 84, that the molecule would tend to a final state in which the radiation

would be nil, and this would certainly necessitate that r should be nil. If
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we assume—and it is a somewhat large assumption—that the remaining

motions could persist without emitting radiation, then the energy of the

molecule would be
7)1 TJX •

\m(u^ + v^ + w2) + i '—^ (r^d^ + r" sin'^ ei>%
nil -\- m.^

7^ now being a constant. This would be exactly the same as for a molecule

made up of two point-atoms, moving as a single rigid body. In this way we
should arrive at the model of the diatomic molecule already suggested by

the experimental evidence of § 273, namely the model of a rigid body made
up of two atoms held at an unvarying distance apart. The ratio of the

specific heats would be 7= 1|, as it ought to be, and we obtain an insight

into a mechanism by which the apparent ankylosis of the sixth degree of

freedom might possibly be produced.

293. Many objections can undoubtedly be brought against the con-

jectural theory just sketched out. It is doubtful whether the electrical

structure of the molecule can be arranged so that there shall be no

radiation, even if we imagine r kept permanently equal to zero, and it is

difficult to imagine a mechanism of collisions which will not set up a large

value of r at every collision, and so result in a large emission of energy

by radiation.

On the whole it does not seem legitimate to treat the molecules as

forming a system by themselves : the more probable view seems to be that

the molecules and the ether must be regarded as forming a single dynamical

system, the two constituent parts of which, the matter and the ether,

interchange energy freely with one another through the mechanism of

radiation. This view, however, cannot be developed here ; it leads directly

into the intricacies of the quantum theory, an introduction to which is given

in a later chapter.

For the present it may be remarked that the classical methods of the

kinetic theory, such as have been explained in the preceding chapters, are

found to lead to results which are consistent with experiment, so long as

we do not attempt to probe into the mysteries of the internal motions

of the molecules. The molecules as wholes may be treated according to

the classical mechanics on which our discussions have so far been based ; the

treatment of the internal processes in molecules appears to demand that

the classical mechanics should be extended and generalised by the addition

of the quantum theory.



CHAPTER YIII

PHENOMENA OF A GAS NOT IN A STEADY STATE

294. In Chapters VI and VII we discussed the physical properties of

gases in which the molecular motion at every point was symmetrical with

respect to every direction in space. We now approach a much more complex

class of problems for which this property is not true. If we refer to the

expression obtained for the law of distribution of velocities at any point of a

gas in the normal state, namely,

yf^ y r_^Y g_,Ym[(„-«„)2+(.„-i,„)2+(«,-w„)2+2x]
(548),

we notice that there are five independent constants Uq, Vq, w^, h and v. The

constancy of v^, Vq, Wq indicates that the mass motion of the gas is the same

throughout the gas : if this mass motion varies from point to point in the

gas, the layers of gas move relatively to one another, and we have the

problem of determining the viscosity of the gas. Similarly the constancy

of h indicates the equality of temperature throughout the gas : if this varies

from point to point we have the problem of conduction of heat. Finally the

constancy of v indicates the mass-equilibrium of the gas : if this equilibrium

does not exist we have the problem of diffusion. These three problems of

viscosity, conduction, and diffusion have now to be approached.

The treatment would be easier than it actually is, if expression (548)

could be assumed to give the law of distribution at every point, subject only

to the circumstance of Uq, Vq, Wq, h and v varying from point to point.

Unfortunately the analysis now to be given will shew that this assumption

would not be a legitimate one.

General equation satisfied by /.

295. As in § 228, let the number of molecules whose centres at any

instant t lie within an element of volume dwdi/dz, while the velocity com-

ponents lie within a range dudvdw, be denoted by

vf(u, V, w, X, y, z, t) dudvdwdxdydz (549).
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If the law of distribution / is known at the instant t, it will clearly be

possible to follow out the motion of each group of molecules, and so obtain

the law of distribution at the next instant t + dt, and similarly at every

subsequent instant. Thus the law of distribution (549) is determined for all

time when its value is given at any one instant.

It follows that the function vf defined above must satisfy a characteristic

equation, of such a form that -r, {vf) is given as depending on vf. And, for

a steady state, vf must satisfy an equation which is derived from the previous

equation by equating -r- (vf) to zero. Thus in a problem of steady motion,

we may not legitimately choose the values of vf so as to satisfy the physical

conditions in the simplest way : the only values for vf which are eligible are

those which satisfy the characteristic equation. We proceed to investigate

the form of this equation, following a method given by Boltzmann*.

296. Let the molecules be supposed to move in a permanent field of

force, such that a molecule at x, y, z is acted on by a force (X, F, Z) per unit

mass. Thus the equations of motion of a molecule, apart from collisions, are

du ^ dv ^ dw „ /cKAx^=^' ^=^' ^ = ^ ^^^^^-

The number of molecules which at any instant t have velocity components

u, V, w within a small range dudvdw, and coordinates x, y, z within a small

range dxdydz is given by formula (549).

Let these molecules pursue their natural motion for a time dt. At the

end of this interval, if no collisions have taken place in the meantime, the

u, V, w components of velocity of each molecule will have increased respec-

tively by amounts Xdt, Ydt, Zdt, while the coordinates cc, y, z will have

increased respectively by amounts udt, vdt, wdt. Thus after the interval

dt, the original molecules will have velocities lying within a small range

dudvdw surrounding the values u + Xdt, v + Ydt, w + Zdt, and coordinates

lying within a small element dxdydz surrounding the point x + udt, y + vdt,

z + wdt Moreover, by tracing the motion backwards, it appears that the

molecules which we have had under consideration are the only ones which, at

the instant t + dt, can have values of x, y, z, u, v, w lying within this range.

The number of molecules having values of x, y, z, u, v, w lying within

this range at time t + dt is however

vf{u + Xdt, v+Ydt, lu + Zdt, x + udt, y + vdt, z + wdt) dudvdwdxdydz

(551).

Hence if no collisions occur, this expression must be exactly equal to

expression (549).

* Vorlesungen Uber Gastheorie, i., Chapters 11 and III.

J. G. 15
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Expanding expression (551) as far as first powers of dt, and equating to

expression (549), we obtain the relation

dt
{vf) = - X^+ F^ +^^ +M^ + v^+w^

ou dv ow ox oy dz
(./)... (552),

expressing the rate at which vf changes on account of the motion of the

molecules, and the forces acting on them.

When collisions occur, these produce an additional change in vf which

can be evaluated as in § 21 (cf equation (12)). It was there found that

when the molecules were elastic spheres of diameter a, this change was

expressed by the equation

dt
(^/)= V' iff-ff) Va' cos edu'dv' dw'du^ (553).

In the more general case in which the molecules may be supposed to

have any structure we please, let the contribution to Kii^f) produced by
ct

collisions be denoted by

|(^/)
coll.

On combining the two causes of change in {vf), we arrive at the general

equation

dt
ivf)=-

9 83 d 9, 9

ou dv dw dec dy dz
{vf) +

dt
{vf)

coll.

.(554).

This equation must, under all circumstances, be satisfied by vf. When
the gas is in a steady state the right-hand member must of course vanish.

297. No progress can be made with the development or solution of this

equation until the term |(^/)
coll.

has been evaluated, and this unfortu-

nately can only be effected to a very limited extent.

Let us consider the form assumed by the problem when the molecules are

regarded as point centres of force, attracting or repelling with a force which

depends only on their distance apart.

We fix our attention on an encounter between two molecules, the

velocities before the encounter begins being u, v, w and u', v', w . The

relative velocity before encounter will be V, given by

F^ = {xi -uy + {v -vy + {w'-wy (555).

In fig. 15 let represent the centre of the first molecule moving in some

direction QO with a velocity u, v, w, and let MNP represent the path

described relatively to by the second molecule before the encounter begins,
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the relative velocity before encounter being V. When the second molecule

comes to within such a distance of that the action between the two

molecules becomes appreciable, it will be deflected from its original recti-

linear path MNP, and will describe a curved orbit such as MN8, this orbit

being of course in the plane MNPO.

Let ROP be a plane through perpendicular to MN, and let MN meet

this plane in a point P. Let the polar coordinates of P in the plane ROP
be p, e, the point being taken as origin, so that OP=p, and any line RO
in this plane being chosen for initial line. Clearly p is the perpendicular from

the first molecule on to MN, the relative path of the second molecule

before encounter.

Fig. 15.

Let us examine what is the frequency of collisions such that the second

molecule has a velocity u', v', w' whose components lie within a small specified

range du'dv'dw', while its path before the encounter is such that p, e lie

within a small range dp, de. For all such collisions the line MP must meet

the plane ROP within a small element of area, pdp de. The number of such

collisions to be expected within an interval dt will therefore be equal to the

number of molecules which at a certain instant lie within a small volume

pdpdeVdt, and have velocities within the specified range du'dv'dw'. This

number is

vf{u, v', w') du'dv'dw'pdpdeVdt (556).

The number of molecules per unit volume having velocities between u

and u + du, v and v+dv, w and w + dw is

vf{u, V, w)dudvdw.

15—2
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so that the total number per unit volume of collisions of the kind we now

have under consideration is

v-f{ii, V, w)f(u', v', w')dudvdwdu'dv'dw'pdpd€Vdt (557).

The class of collisions now under consideration is similar to that which

we called class a in § 17, and expression (557) is obviously a generalisation of

our former expression (4).

The argument can proceed as in | 17, expression (557) replacing ex-

pression (4). Formula (9) is still true, beir^ now a consequence of the

general theorem of Liouville (§ 85), and we obtain, just as in formula (11),

^^^'''^^Icoii
=/////"'^//'-'^/') Vdu'dv'dw'pdpde (558).

This, then, is the required generalisation of equation (553). It clearly

reduces to this latter equation for elastic spheres, the factor &^ cos 6 dw of

equation (553) being exactly the factor pdpde of equation (558).

298. On substituting this value into equation (554), we obtain as the

characteristic equation which must be satisfied by f.

"u^^f^-
tr d ^y. d „ d d d 9

du ov cw ox oy oz
ivf)

+ v'Uj'-ff) Vdu'do'dw'pdpde ...(559).

For a mixture of gases, in which the different kinds of molecules are

distinguished by the suffixes 1, 2, ..., we obtain in a similar way a series of

equations such as

d .

dt
(^i/i) =

-^ d -fy d r, d d d d

du ov ow ox oy oz
i.v.f.)

+ s ViV^ifif^ — fifz) Vdu dv'dw'pdpde ...(560).

299. It at once appears that putting

y= j^Q-hml(u-WaYi+(v~v^)^+(w-wo)-q (561)

makes the right-hand member of equations (559) and (560) vanish, and so

provides a solution when X = Y = Z = 0, and if is independent of x, y, z.

This is the solution already found in § 25.

On substituting
f=j^e-hmic^+ix) (562)

into equation (559), we obtain

Xu+Yv + Zw + u^^ + vp^ + w^/- = (563),
ox dy oz ^ ^



297-301] Boltzmami's Equation 229

which is satisfied if

9a;

'

dy

'

dz'

Thus (562) is a solution when ^ is the potential of the forces acting on

the molecule, the result obtained in § 110.

300. If, however, u^, Vo, Wg, h and v vary from point to point, formulae

(561) and (562) do not provide a solution, for on substituting them into

equation (559) we find that the right-hand member vanishes, while the left

does not.

To search for a solution appropriate to this case, assume

f=fo[l + ^(x,y,z,u,v,w)] (564),

where <l> is a small quantity of the first order, and

/o = Jig-hmKu-Uof+iv- v„>2+(mj-Wo)2] (565).

Since /=/o is a solution when Uq, Vq, Wq, h and v do not vary from

point to point, it follows as a matter of necessity that equation (564) must

provide a solution when these quantities vary to the first order of small

quantities.

301. The integrand of equation (560) contains a term ViV^f^f^ of which

the value, by equation (564), is

vxvjj; = v,v,f,,f^ (1 + a>, + $/) (566).

Here /„ denotes the value of /« for a molecule of the first kind, and so

on, and the product ^1^2 is omitted as being of the second order of small

quantities. Similarly

I'l 1^2/1/2' =^1 1^2 /oi/o2'(H-<^j+<i>2') (567),

and, from the conservation of energy and momenta at an encounter,

fnfm=foifm (568 ),

so that

v^v, {f,fi -/,//) = v,vj,,f^ (^, + ^^ - CD, - $/).

On substituting solution (564) into equation (560), / may be replaced by /o

everywhere except in the integrals, for if we retained terms in O in the

remaining parts of the equation, we should be including terms of the second

order of small quantities. Equation (560) accordingly reduces to

(9.1^9 ,7-9 „ d 9. 9 9\, /,.

9^ + ^91.+ ^91;
^^9-^ + ^9^ + %l,

+ "9l)(^'^->

= r,/ox S
[ 1 1 j

[ v,f^ ($, + <^/ - ^1 - <!>/) Vdu'dv'dw'pdpde . . .(569),

an equation in which every term is of the first order of small quantities.
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On dividing out by Vifoi and replacing /„ by its value from equation (565),

this equation becomes

dy

X {log vA - hm [{u - UoY + (v- v^f + (w - w^y]]

\dt ou dv ow dec dy ozj

X {log vA — hm [{u — UoY + (v — Vq)

= ljj
Ifj v.,U (<^i + -^Z - ^1 - ^2') Vdu'dv'dw'pd'pde . . .(570).

302. There is a certain indeterminateness about the proposed solution

(564), in that changes in u^, Vq, Wq or in vA or h are not separate from changes

in ^ : thus changes in /« may be absorbed in <J>, or vice versa. For instance

the total momentum parallel to the axis of x of unit volume of the gas is

muvfdudvdw = muvfodudvdw + \l I inuvfo^dudvdw

= mvUo+ j II muvfo^^dudndw (571),

and an increase in this can equally be represented by increasing Uo or by

changing <I>.

We can make the solution (564) perfectly definite if we agree that

Uq, Vo, Wo, h and vA are to have the same physical interpretation in the

general solution (564) as they have in the steady-state solution. If this is

agreed on, the components of the velocity of mass-motion must be u^, Vq, w^.

Thus the momentum parallel to the axis of x must be mvUo, and so, from

equation (571), we must have

j
vfoU^dudvdw = (572 ),

together with two similar equations in v and w.

Similarly we may agree that we must have

(''^f
(573),

///

and the condition for this is found to be

vfQ^dudvdw = (574).

Finally we may agree to make

2hm '

as in equation (45) for the steady state, C^ being the mean value of c^ for all

the molecules in any small element of volume : the condition for this will be

///
vfo (u'^ + v^ + w^) ^dudvdw = (576).
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303. If <I> is restricted in this way, the equation of continuity for the

gas, neglecting small quantities of the second order (cf. equation (448)),

becomes

d?''^'
= -\^'-dy^Tz) ^"^^^-

Using the values for logi/ and log -4 provided by equations (577) and

(573), and simplifying by omitting certain terms which are small quantities

of the second order, equation (570) reduces to

7) ?)

(1 + Ihmc') ^ log 1/ + g 11 log h-hm {{u - u^Y + (w - v^f \- (w - w^f]]

— 2hm (uX + vY+ wZ) + fw^+v^ +ty — jlogy

= 2
jjjjj

vj^ ($1 + $/ - $1 - ^/) Vda'dv'dw'pdpde . . .(578).

304. It will be remembered that this equation is only accurate when 4>

satisfies five relations, expressed by equations (572), (574) and- (576). The

solutions in <I> will however be additive, since the equations are linear ; five

solutions which contribute nothing to either side are

<E>=1, mil, mv, mw, mc^ (579),

so that to any solution for 4> which satisfies equation (578) may be added

terms of the form

^ = B + Cmu + Dmv + Emw + Fmc^ (580),

and the constants B, C, D, E, F may be adjusted so as to satisfy the five

necessary conditions.

Law of Force fir~^.

305. Further progress with equation (578) can only be made by assuming

definite laws for the interaction between molecules at collisions. We shall

therefore suppose that the molecules are centres of force repelling according

to the law /i,r~**.

If two molecules of masses Wj, wi^ at a distance r apart exert a repulsive

force

mim^- (581),

* The method of §§ 305—310 is that of Maxwell, Collected Works, n, p. 36.
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then their potential II at this distance is

^=]J'^^'^"^^dr = m,m,jj~j^^ ^^^^^•

Let the coordinates of the two molecules be denoted by x-^, y^, Zj^ and

^2) y^, s^2- Let them be acted on by their mutual repulsive force, and also by

a force of components X, Y, Z per unit mass, which may be supposed not to

vary over distances comparable with the distance r between the two molecules

in an encounter.

The equations of motion of the two molecules are

Wi^i= js l-miZ, etc (583),

an „
wi2^2=o h W2X, etc (584),

from which we obtain

/.. ... an an
m^m^ (aji — aja) = wi2^ — mi^ (o8.5),

and two similar equations.

Let X, y, z be the coordinates of the first molecule relative to the second,

so that x = x-i,
— X2, etc. Then H is a function of x, y, z and equation (58-5)

reduces to

... ,an
mimoX = {mi + m.2) tt- (586).

Thus the motion of the first molecule relative to the second is that of a

particle of unit mass about a fixed centre of force, the potential energy at

distance r being

mi + m^^^(mi +m^
miT/ia (s — 1) r*~i ^' ^'

306. To investigate this orbit, we change from the coordinates x, y, z to

polar coordinates r, 6 in the plane of the orbit.

We have the two usual integrals of momentum and energy,

r^d^h (588),

i(,.^^^.) = C-(»'-t^;>_f (589).

Eliminating the time, the differential equation of the orbit is

lAM/ary. „l_^_(y^z^+m2)^
2rMW j (s-l)r*-i '
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and this has the integral

r

e =
dr

\/\h?
2{mi + m^)K

.(590),

/V»4 «2 __ _\ z ~'
/}'i

^2 ^ ^ {S-I)h^

in which the direction of the asymptote to the orbit is taken to be the initial

line ^ = 0.

307. From equations (588) and (589) we have

h=pV, = iF^ (591),

where V is the velocity in the orbit at infinity (i.e. the relative velocity of

the two molecules before the encounter begins) and p is the perpendicular

from the centre on to the asymptote described with this velocity. Thus p, V
are used in the same sense as in § 297.

Using relations (591), and further writing t] for p/r, equation (590)

becomes
dr}

6 =
/ji _ .2 _ 2(m, + m,)i: (vV-^

oVr {s-l)V' \p)

dr}

where

.(592),

.(593).

dr
308. The apses of the orbit are given by ^ = 0, and therefore by

From a simple graphical treatment, or from Sturm's theorem on the

roots of algebraic equations, it is clear that this equation can only have one

real root for all values of s greater than 1. Call this root t/o, then the angle,

say $0, between the asymptote and the apsidal distance will be given by

equation (592) on taking the upper limit to be t/q. The angle between the

asymptotes, say 6', is equal to twice this, and so is given by

dr}
^'=2^0 = 2

.vH-.hm
.(594,).

After the encounter, the velocities parallel and perpendicular to the

initial line are of course — V cos d' and — V sin 0',



234 Phenomena of a Gas not in a Steady State [ch. viii

309. For any value of s, there will naturally be a doubly infinite series

of possible orbits corresponding to different values of p and V. Except for

a difference of linear scale, however, these may be reduced to a singly
2

infinite system corresponding to the variation of a or jt)F*~^. In fig. 16*

some members of this singly infinite system are shewn for the law of

force fijr^.

Fig. 16.

310. Let us consider a collision between two molecules, the velocities

before collision being a, v, w and u', v, w', so that the relative velocity V is

given by

V' = {u'-uf+{v'-vf + {w'-wy (595).

In fig. 15 of § 297, the line OR from which e was measured was supposed

to be an arbitrarily chosen line. For definiteness, let this now be supposed to

be the intersection of the plane FOR with a plane through containing the

direction of NP and the axis of x, as in fig. 17.

In fig. 18, let OR, OX be the directions of the line OR of fig. 17 and of

the axis of x. Let OG be the direction of V, the relative velocity before

collision, so that OR, OX, OG all lie in one plane. Let these lines be supposed

each of unit length, so that the points GXR lie on a sphere of unit radius

about as centre.

Let Y, OZ be unit lines giving the directions of the axes of y and z, and

let OG' give the direction of the relative velocity after the encounter. Then

* This figure in given by Maxwell, Collected Works, ii. p. 42. I am indebted to the University

Press for the use of the original block.
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GOG' is the plane of the orbit, which is the plane NPO in fig. 17. Thus the

angle RGG' is the e of § 297, while the angle GOG' is 6'.

Fig. 17.

From the spherical triangle G'GX,

cos G'X = cos GX cos GG' + sin GX sin GG' cos e,

in which we have cos G'X = - '-^-^ , cos GX = "^^ , so that

u-u' = (u- u) cos 6' + VF^^ {u - uf sin ^' cos e .(596).

Denoting the angle XGY hy co^ and ZG^^ by (03, we have, in a similar way,

v-v' = (v'- v) COS e'+\/V^- (v' - vf sin d' cos (e - 0)2) . . .(597),

w-w' = {w'- w) COS ^' 4- V F^-^w'- w;)2 sin ^' cos (e - Wg) . . .(598).

We determine w^ by noticing that in the triangle GXY, XY^lir and
XGY = (0.2', thus

{u' - u) {v' - v) + V[ F2 - {u' - uY] [V - (v'- vf] cos &)2 = . . .(599),

and similarly

(n' - u) (w' -w) + \/[ Y' - (u' - uy] [ V^ - (w' - w>] cos 0)3 = . . .(600).

In addition to these equations, there are three equations of momentum,
such as

viiU + m.2U = WiM + m^u' (601).

Eliminating u' from equations (596) and (601), we obtain

u = u+ -^'— [2 (u' - u) cos^ ^e'-\-\/V'-{u'- uf sin 0' cos e] . . .(602),

giving u in terms of the velocities before collision, and there are of course

similar equations giving v and w.
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Solutions for ^.

311. We are now in a position to proceed with the evaluation of the

integrals in equation (578), From equation (593) we have

2 4

pdpd€ = [{mi + m^) Ky~^V ^-^cidade.

The right-hand member of equation (578) now assumes the form

2 5 — 5

2i/2 [(mi + m,) KY^' jjjlFV"^'A'du' dv'dw' (603),

where Ip=l{(^^+^^ -^^-^^)ad(ide (604).

In these integrals, it will be remembered that <l>i is a function, as yet

undetermined, of u, v and ^v. ^^ is the similar function of u', v', w for

a molecule of the second kind, while Oj, ^^ have corresponding meanings

in terms of the velocities after collision. Our task is not to evaluate expres-

sion (603) for given values of <I>, but to find values of <& such that after

integration expression (603) shall be equal to a certain algebraic function

containing terms of degrees 0, 1, 2 and 3 in w, t; and lu—namely, the left-hand

member of equation (566).

312. Consider tentatively a value of <t> which is algebraic and of degree p
in u, V, w. It is readily seen from the equations of § 310 that both

$1 -f- ^2' - ^1 - ^2'

and the integral (604) will be of degree p in u, v, w.

To obtain the integi-al in expression (603), the integral (604) must be

multiplied by F*"^ and the product averaged over all values of u, v', w',

Maxwell's law being assumed to hold. The result is an expression of degree

P +^ (605)

in the velocities.

In order that expression (603) may be equal to the left-hand member of

equation (578), ^ must consist of terms for which expression (605) has the

values 0, 1, 2 and 3. But in general, unless s has very special values, the

values for p obtained in this way will not be integral, and the evaluation even

of the preliminary integral (604) cannot be effected in finite terms.

For this reason the method fails to provide an exact solution in the

general case*. In particular cases the integration can be effected.

* Mention should be made of an interesting but difficult paper by Enskog (Phys. Zeitschrift,

XII. (1911), p. 56). Enskog shews how the iutegration can be effected, and indeed the general

equation (578) solved in terms of functions which are themselves definite integrals. There are an

infinite number of these functions, and Enskog arrives at an approximate solution by neglecting
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313. The special values of s for which the integration may be possible

5 — 5
are those for which :7 is integral, and are therefore s = oo and s = 5.

5—1 °

The value s = oo corresponds to the case of elastic spheres ; no solution

has yet been obtained for this case.

The value s = 5, corresponding to molecules repelling with a force /x/r^, has

been fully treated by Maxwell. Maxwell's method is somewhat different from

that we are now considering, and so his treatment is reserved for the next

chapter, where it is given in full. For the present the following points may

be noticed about the special case of s = 5.

When 5 = 5, the factor F*"^ disappears entirely from expression (603)

and the value of the integral in this expression reduces simply to the value of

Ip averaged for all velocities of the second molecule. Also when s = b, expres-

sion (605) reduces simply to p, so that in the correct solution ^ will consist of

terms of degrees 0, 1, 2 and 3 in u, v, ^v*. The integral Ip is easily evaluated

from equations such as (602), and the further expression (603) is then easily

found, leading directly to the value for <^.

Leaving aside the special case of s = 5, it has been seen that the preliminary

integral (604) cannot be evaluated for values of <I> such as are required to give

a solution of the general equation (578). There is however one special case

in which the integration can be carried out without limitation' to the special

value s = 5. We proceed to consider this case, partly as an illustration of the

method, but mainly because the case is itself of great physical interest, and

because the results obtained will be required later-f.

314. Suppose that there are only two kinds of molecules (or other units),

and that of these the molecules of the second kind are enormously heavier

than those of the first. Let us also suppose that the light molecules are few

in number compared with the heavy ones, so that the deflections of the paths

all except the first few integrals. The solution is therefore not an exact solution, and moreover

suffers from the disadvantage that it is not possible to estimate the amount of error involved. It

leads to the relation ^= 5kC„ for elastic spheres, and this is known to be so far from the truth

that the method of approximation becomes rather devoid of interest (cf. § 424 below).

* It is clear from what has been said that in no case except s = 5 can 4> consist of terms of

degrees 0, 1, 2 and 3 only in u, v and tc. Chapman has published an interesting paper ("On
the Kinetic Theory of a Gas constituted of spherically symmetrical molecules," Phil. Trans. A,

211 (1912), p. 433) in which, however, he assumes that /or all values of s, 4> may be supposed to

consist of terms of degrees 0, 1, 2 and 3 in ii, v, ic. One of the main results of his paper is that

certain formulae, obtained by Maxwell for the special case s = 5, are true for all laws of force.

This conclusion cannot be regarded as rigorously established since the author virtually limits

himself to the case of s = 5 by the form he assumes for 4>, but it appears to lead to results in good

agreement with experiment. In a later paper the same author has examined the error introduced

by this assumption, and shews that it is very small. See below, §§ 408 and 424.

t The method of §§ 314—332 agrees in its main lines with one first given by Lorentz (Theory

of Electrons, Note 29).
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of the light molecules may be supposed to be caused entirely by encounters

with the heavy molecules : we neglect the encounters of the light molecules

with one another. To fix the ideas, we may think of the light " molecules
"

as electrons in a solid, and the heavy " molecules " as the atoms or molecules

of the solid, between which the electrons thread their way. The results

obtained will subsequently be applied to this particular case, although the

analysis is naturally applicable to more general problems.

On account of the assumed inequality of mass, it follows that the velocities

of the heavy molecules will be very slight compared with those of the light

molecules. We shall accordingly neglect u', v, w' in comparison with u, v, w,

and so may think of the heavy molecules as being at rest. The dynamics of

collisions are greatly simplified, for we may now regard the heavy molecules

as massive obstacles which deflect the light molecules without altering their

velocities. The velocity c of the light molecule before collision is equal to

the relative velocity V, and also to the velocity c after collision.

315. Since u', v , w' are supposed to be so small as to be negligible, ^^

and O2' may be neglected, and the preliminary integral (604) is given by

Ip=l[(c^,-<^,)adade (606),

which is a function of u, v, w only. Expression (603) now reduces to one term

only, of which the value is

2 s-5

V, (m,Ky^' fjjip V'^^f^'du'dv'dw' (607).

s-5

The integral in this expression represents simply the value of IpV^-"^

averaged over all the heavy molecules. Now V is equal to c, and Ip does

not depend on the velocity-components of the heavy molecules so that the
8-5

integral in question is simply equal to /pC*"^, and expression (607) becomes'

2 s-5

i^2(w?2ir)*^/pC«^i (608).

The preliminary integral Ip is now given by equation (606) and is readily

evaluated in the special case now under consideration, for equation (602)

reduces to

u = u- 2tc cos^ I
(9' + Vc2^^2 sin ^' cos e (609),

and there are corresponding equations giving v and w.

316. Consider, for instance, a tentative solution

^ = w</)(c) (610),

where ^ (c) is any function of the velocity c. Since c remains unchanged by

the encounter, we have ^ = m<^ (c), so that

$ - ^ = - (2w cos2 ^^' - Vc^ - u' sin 6' cos e)
(f>

(c).
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Multiplying by ada.de and integrating from a = to a = oo and from e =
to 6 = 27r, we obtain

Ip=-4<'jru<f)(c) ^cos^0'ada (611).
Jo

The integral in this expression depends only on s (cf. equation (594)). It

cannot be evaluated in finite terms, but for a given value of s can of course be

evaluated by quadrature. If we write

4s7r rcos^d'ada = I,(s) (612),
Jo

then it appears that the solution (610) gives to Ip the value Ip = — I^ (s) <I>.

By combining solutions of this type, it appears that if yjri is any function

of w, V, w and c, which is linear in u, v and w, the solution

<^ = ^, (613)

gives Ip = — I^{s)-^^ (614).

317. Consider next a solution

«J) = (i^2_^c^)</)(c) (615).

We have, with the help of equation (609),

^j_Oi = (m2-m2)</)(c)

= [- u' + (c^ - u^) cos2 e] sin" 9' + 2u \/c^ - v? sin 6' cos & cos e,

so that, from equation (606),

Jp = TT {c- - 3m2)
I

sin^ d'ada.
Jo

If we write tt 1 sin^ O'ada = I^is) (616),
Jo

then a solution of the type (615) is found to give to Ip a value

Ip=-SI,(s)^ (617).

318. As regards the solution just obtained, imagine the axes of coordinates

transformed, so that v becomes replaced by lu + mv + nw. Then the solution

O = \{lu + mv + nwy - ^c^] ^ (c)

= [lHu' -^c') + ... +2lmuv + ...] <f>{c) (618)

is seen to give the value

Ip = -SI^(s)[l'{u''-^c')+ ... +2lmuv+...] (619).

But, from § 317, it follows that the terms in l^, m^, n^ in (618) give exactly

the terms in l^, m^, iv^ in (619). Hence we may equate coefficients in the

remaining terms and find that a solution

^=uv(f>{c) (620)

gives Ip=-SI,(s)^ (621).
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319. By combination of solutions of the type (615) and (620) it appears

that if -v/rg is a function of u, v, w and c, of degree 2 in u, v and w, and such

that the sum of the coefficients of u^, v"^ and w^ vanishes, then the solution

<^ = ^/r2 (622)

gives /p = — 3/2 (s) 1/^2 (623).

Clearly -v/rg regarded as a function of u, v, w must be a spherical harmonic, as

also is -^1 in § 316.

.(624)

320. Combining the two solutions yjr^ and T/rg, a solution

<I) = -^j + >|r„

gives ^p = - (^1 («) "^i + 3/2 (s) -^2),

and therefore makes expression (608) equal to

-v,(m,Ky-'c''-HI^{s)ylr, + SI,(s)ylr,) (625).

Since this is the value of the right-hand member of equation (578), it

appears that a solution of the type (624) will provide an adequate solution to

equation (578) in the particular case of a steady state. For, in this particular

case, the equation to be satisfied becomes

- 2hm {uX + vY + wZ) + (^ 9^ + ^ 9" + ^ g^)
^^g ^

— 2hm

dy

dhdh

OX

s-5

= -v, {m,Ky-^ c*-i (/, (5) ti + 3/2 (s) ^2) . . .(626),

and this is satisfied by taking

( 2 3 \ a/i"

"^1 =
2hmX - - — +

V ox
+

2 s-5

I/O (?n2 Ky-^ c«-i /i (s)

2hm

^^2 =
\u'-W{^* + ""(85+3^' + -

2 ^-5

.(627),

.(628).

Thus a solution 4> = t/ti + x/tj is adequate to satisfy equation (578), but in

order also to satisfy the conditions expressed by equations (572), (574) and

(576) we may require to take the more general solution of § 304,

^ = yfry-h -yjrz + B + Cmu + Dmv + Emw + Fmc^,
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where B, C, D, E, F are constants, as yet undetermined. In the present

problem, G, D, E must be the same for both kinds of gas, and the molecules

of the heavier gas are supposed to be at rest. Thus C, D, E must all vanish,

leaving the solution

^ = A/ri + >/r2 + 5 + J^mc- (629).

321. The law of distribution of velocities has been supposed (cf. equation

(564)) to be

/hm\ 2

vf{u, V, w, cc, y,z)=v — e-ft»»[(«-«o)'H{«-t»o)'^+(«'-«'.)^] n +^ ...(630),
\ IT J

and on substituting for <I> the value given by equation (629) we obtain the

law appropriate to the special case now under consideration, namely that in

which deflections in the paths of molecules of the first kind are produced

solely by encounters with very much heavier molecules of a second kind.

This special case is obviously of a very artificial kind, but no solution of

the general problem in finite terms has yet been obtained.

Some applications of this special result will be made in later chapters.

For the present we may illustrate the nature of the solution by the following

examples.

Viscosity.

322. Suppose that the light gas is in a steady state, and at a uniform

temperature throughout, but that it has a mass-velocity Mq, Vq, Wq which varies

slightly from point to point. The uniformity of temperature involves also

uniformity of density, for otherwise inequalities of pressure would set up

further mass-motions. Thus we obtain the solution appropriate to this

case by putting h and v each constant, and X=Y=Z=0 in the equations

of § 320.

It is clear from equation (627) that -^^ = 0, so that i/tj occurs alone in the

solution (629). Moreover, B and F may be omitted, since their retention

would merely result in infinitesimal changes in h and v.

Thus an adequate solution is 4> = i/rg, given by equation (628), and the

substitution of this value for <1> in equation (630) will give the true law

of distribution.

323. We may now calculate the pressures in the gas fi'om formulae (459)

of the last chapter, leaving out the components vr^x, etc., which arise from

intermolecular forces (cf § 354 below). We have

J. a. 16
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Substituting for y^.,, and writing for brevity

^, = v,{m,Kf^U,{s) (631X
this becomes

^^^^27i~~"^ W) Jo

s-5

hmc'^

,

dc

15

P
AiTHV 4i-)

and similarly

'dx 3 V 9a^ 8y S^- /

3wo _ 2 /9mo
, ^ , 9^\+

8^y

-Pa^t/ = /JUV = -
4mi/ C4,-)

45 V-TrAg

3^0 8 Wo

8a; 32/_

.(632),

.(633).

{hrnif ^ ^

These equations shew the amount of the additional pressures which are

superposed on to the hydrostatic pressure jp by the mass-motion of the gas.

324. In a viscous fluid, having a coefficient of viscosity k, the system of

pressures at any point is given by the equations*

Ti ^ 9'Wo " 3 Mo 8^0 9w.'o'

y — '^
\

-^ xy —

"bx 3 \bx dy dz

9^0 ,
9wo\

dx dy

)

.(034),

.(635),

in which Hq, Vq, Wq are the components of the mass-velocity of the fluid. It

accordingly appears that the pressures given by equations (632) and (633)

will be exactly accounted for by regarding the gas as a viscous fluid having a

coefficient of viscosity

{hmy-^ ^'-^*l

Conduction of Heat.

325. Consider next a gas which is in a steady state, and devoid of

mass-motion, but which is not at a uniform temperature. For simplicity

suppose the gas arranged in parallel strata of equal temperature, so that the

temperature is a function of z only.

* Lamb, Hydrodynamics, p. 512.
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Turning to the general solution of § 320, it appears that in this special

case y^o does not occur, while, on taking X =Y = Z =0, the value of i/r^ is

found to be
.-j-5 r- -I n . n . Tl-[

(637),
Idv

f
2 S\dh~

vdx \ 2h/ dx_

A,= vAm,Ky-UAs)where Ai = i/2(m2^)«-i/i(s) (638).

An adequate solution is now seen to be <I> = -i/r^, where, in order that

there may be no mass-motion

—

i.e. in order that the process of conduction

may not be complicated by the addition of convection—we must have

vfoUyJTidudvdw = (639).

On substituting for i/r^ in this equation, and carrying out the integrations,

we obtain the relation

fi^ dv S_dh\ _ldh f 2s \

[vdh^2hdx)~h~dw\s-l) ^^*"^'

This is found to give as the value o{ yp-i,

u _«_z5 r , 1 [ 2s \\dh ,„.,,
t. = ^c -^[-c-^(—JJg-

(641).

326. The translational energy of a molecule ^mc^ represents an

amount of heat equal to ^md^jJ, where J is the mechanical equivalent

of heat.

Summing over all molecules, we find as the total flow of heat per unit

area perpendicular to the axis of x, which arises from the translational energy

of the molecules,

^ \\\vAe-^'^'='c^uy^^dudvdw (642),

of which the value, after integration over all values of u, v, w, is found

to be

m^v \s-\ J dx

327. If ^ is the coefficient of conduction of heat, the total flow of heat
rim -I

per unit area perpendicular to the axis of a; is — ^ ^, or, since T= ^itd'ox 2hii

(644).
2h^Rdx

If we assume that the ratio of internal energy to translational energy

16—2
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involved in this flow is y8*, as in § 261, then expression (644) must be equal

to (1 + /3) times expression (643). Hence we obtain

(Am)*-i 2

Using the values of the specific heat at constant volume given by

equation (512), and of the coefficient of viscosity given by equation (636),

we find that this value of ^ can be expressed in the form

^ = e/cC, (646),

where e is a pure number, being given by

6 =5^ (647).

328. Relation (646) depends only on the physical constants of the first

gas. It is strictly true for the viscosity and conduction of heat which result

from the motion of the molecules of the first kind amongst the more massive

molecules of the second kind. Since the relation is in no way concerned

with the properties of the molecules of the second kind, it is not unreasonable

to hope that it may remain approximately true, even when the two kinds of

molecules are identified, so that ^, k refer to the ordinary coefficients of con-

duction of heat and viscosity of a single gas.

For the special case of 5 = 5, Jj and /g have been evaluated by Maxwell

(cf. below, §§ 348, 349). Using these values, equation (647) gives as an

approximation when there is only one kind of molecule, 6 = 2*507. The

exact value of e for this case has been found by Maxwell to be e = 2*500

(cf § 356, below), so that in this instance the approximation is by no means

a bad one.

For the case of s = oo (elastic spheres), the values of I^ and /g are readily

found to be /i(oo) = 7rcr^ and 73(00 ) = ^-77cr^ whence equation (647) is found

to give 6 = 1*666. This is too small to agree with observed values. The

actual value of e found experimentally will be considered later (§ 425).

Conduction of Heat in a Solid.

329. According to Drude's theory of metallic conduction (cf below,

§ 427), conduction of heat in a solid takes place through the agency of free

electrons, moving about, like the molecules of a gas, through the inter-

stices of the solid, and having their motion checked at intervals by collisions

with the atoms or molecules of the solid. The physical conditions assumed

• This is a very debateable assumption : see § 417 below.
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by this theory of Drude's are accordingly almost exactly the same as those

assumed in § 314.

On this theory, then, the coefficient of conduction of heat in a solid

will be given by formula (645), with yS put equal to zero, to represent that

the whole energy of the electron is its energy of translation.

On the same theory, the coefficient of conduction of electricity may easily

be found from the analysis just given.

Conduction of Electricity.

330. We suppose the current to flow parallel to the axis of x, and to

be produced by an electric force of intensity H. We may then put

m
in equation (626) ; we have h, v, Uq, Vq and Wq independent of x, and so find

that an adequate solution is obtained by taking

<^ = ^.= ''1^:. ^2A.HcJl.
^^^3^^

where Aj is given by equation (639).

331. The current i is equal to the flow of electricity per unit area of

cross-section perpendicular to the axis of x, and so is given by

= \\\ veuf{u, V, w, X, y, z) dudvdw

^\\\ veuAe-''"^"- -r dudvdw

2 e V \s-l J a
.(649).

S^^ttRT Jl^ + I a,
(/im)«-i 2

332. The current i is also equal to o-H, where <r is the specific

conductivity of the solid, so that

2 ^. ^{~l*')
"=3v^srA,—-1^ • («^»>-
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The value of the thermal conductivity ^ is obtained on putting /S = in

equation (645). On comparison of the two coefficients, we obtain*

^=.-T^ (^^i^-

Diffusion of a light gas into a heavy one.

333. The analysis of this chapter will give an exact solution of the

problem of the diffusion of a light gas into a heavy one, when the ratio mijm^

is so small that it may be neglected, and may be expected to give a good

approximation when the ratio mijm^ is quite small, as it is in many physical

instances, such as the diffusion of hydrogen into air, oxygen or carbon-dioxide.

For a diffusion problem (cf. equation (626)) we take u^, Vq, Wq all

constant, and X =Y= Z=0. A sufficient solution of equation (626) is

accordingly

u dv

* = ^. =-^ (652),

where Aj is given by equation (639), and the diffusion is assumed to take

place in directions parallel to the axis of x.

The flow of molecules parallel to the axis of x, measured per unit area

per unit time, is

\ TT / j;Ai dx I

47r fhm\i dv ^^[s-l'^V .__

.

=-sk:w dx—x;r~ ^^^^^•

(hmy-^

The coefficient of diffusion, say 2), is the coefficient of — — in this

expression (cf § 433), and so is given by

2
+ 2

(hmy-^ ^

S- 2R^T
* For elastic spheres (s= oo) this reduces to -= -^ , an equation given by Lorentz (The

^
<r eV

Theory of Electrons, p. 67 and note 29). Eichardson (The Electron Theory of Matter, p. 421),

^ 2s li^T
by a method similar to that of Lorentz, obtains the more general equation - = -—r- —^

.

A formula similar to that of Eichardson is also given by Bohr (Studier over Metallernes

Elektrontheori ; afhandling for den filosofiske Doktorgrad, Copenhagen, 1911, p. 53).
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Comparing this with the coefficient of viscosity k given by equation

(636) we find

P

where ^ is a pure number given by

?='-^^^t ''''^-

Using the vahies of I^/Ii previously given (§ 328), we find that

when s = 5, ^=^'=1-5043 (656),

whens=oo, ^=^y'=l-25 (657).

We shall return to a discussion of the problem of diffusion in a later

chapter.



CHAPTER IX

PHENOMENA OF A GAS NOT IN A STEADY STATE {continued)

Maxwell's Theory.

334. The subject of the present chapter is Maxwell's theory of the

behaviour of a gas in which the molecules are supposed to be point centres

of force, repelling according to the inverse fifth power of the distance*.

Maxwell's original theory has been greatly improved and elaborated by
Kirchhoff and Boltzmann. In the present chapter we shall in some respects

follow Kirchhoff 's discussion of the problem more closely than the original

investigation of Maxwell.

General Equations of Transfer.

335. Let Q be any function of the velocity components of a single

molecule, e.g. momentum, energy. We proceed to form general equations

expressing the transfer of Q.

At any point x,y,z\etQ be the mean value of Q, so that

Q= \\\f{u, V, w)Qdudvdw (658).

The number of molecules inside a fixed rectangular parallelepiped dxdydz
at this point is vdxdydz, and hence SQ, the aggregate amount of Q inside it,

is given by _
tQ^-vQdxdydz (659).

We now examine the various causes of change in %Q. In the first place

some molecules will leave the element dxdydz, taking of course a certain

amount of Q with them. It has been already found in expression (445), that

the total number of molecules of class A lost to the element dxdydz in

time dt is

u— +v ^ •\-W:^\ (vf) du dvdw,

* " On the Viscosity of Internal Friction of Air and other Gases," Collected Works, u. p. 1.
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and hence the total amount of Q lost by motion into and out of the

element is

If we write
r r r

uQf{u, V, w)dudvdw — uQ, etc.,

Qdudvdw (660).

so that uQ is the mean value of mQ averaged over all the molecules in the

neighbourhood of the point x, y, z, expression (660) can be put in the form

dxdydzdt |(™(3)+|(«e)+l(«,Q)' .(661).

Another cause of change in SQ is supplied by the action of external

forces on the molecules. For any single molecule, we have

dQ^dQdM
,
dQdv

.
dQdw 1 f^dQ

,

^dQ
,

^dQy
dt du dt

_^^dv_^dQdw^lf^dQ^YdQ_^^dQ\
dv dt dw dt m \ du dv dwj

'

where X, Y, Z are the components of the external force acting on the

molecule, so that in time dt the total value of SQ experiences an increase

...,....^[x(|) + r(|) + .(|)] (662),

where again the bar over a quantity indicates an average taken over all

molecules.

Lastly, ^Q may be changed by collisions between molecules. If Q is any

one of the quantities which have previously been denoted by %ij Xz'-'-Xs'

namely the mass, energy, and the three components of momentum of a

molecule, there is no such change, but if Q is any other function of the

velocities such changes will occur. In general let us denote the increase

in XQ which is caused in the element dxdydz by collisions in time dt by

dxdydzdt^Q (663).

Expressions (661), (662) and (663) now contain between them the effect

of all possible changes in 2Q. The value of SQ is however given by

expression (659), so that the change in SQ in time dt will be

-T. (vQ) dxdydzdt.

Comparing the two different values which have been obtained for this

change, we have

~d_

dx^(.Q) = - (wg)+|^(«>Q)+^(w»®]

V
+ -
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336. From this general equation we can obtain the equations of

Chapter VII as special cases. If we put Q = 1, so that Q = 1, the equation

becomes
dv

dt

" o o o "

the equation of continuity already obtained in equation (448).

Again, on putting Q = mu, we obtain

.(665),

d ,m
-J-

{vUo) = — m
doc

+ i;Z + AQ...(666).

When the molecules collide only with other molecules of the same kind,

AQ vanishes, and this equation becomes identical with equation (454).

337. If we multiply equation (665) by Q, and subtract from equation

(664), we obtain as a new form for the general equation.

dQ ^
QL(^^o)-l{^uQ) +^x(^£)yAQ (667),

dx'-""'"' dx

where 2 denotes summation with respect to x, y and z.

Let us now write u = Wq + U, etc.

so that u, V, w are components of molecular velocity. Then

Hence

dx dx dx

"** dx dx
= -VU,-^-^ -:^(VUQ).

If Q is now expressed as a function of Wq, u, etc.

dQ dQ dQ

so that

du 9(mo+U) duo'

\du) \duj dUo'

Making these substitutions, equation (667) becomes

dQ 9 / -T^x V v^QdQ y

or, again, if we write

+ AQ.

Dt~ dt^ = - + ^°a^ + "»9y-'^"-
d_

'dz

.(668),

.(669),
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D
so that yr denotes differentiation following an element of gas in its motion,

the equation becomes

_^ (v{}0) +—z^
dx m diio

+ AQ .(670).

Equations of transfer for a single gas.

338. When there is only one kind of gas present, a transformation of this

equation can be effected.

Put Q = ti in equation (670), then since there is only one type of molecule

AQ = 0. As before in § 336, we have Q = Uo, so that

Also

8e_j 3Q_dQ_Q

UQ=U(U +Wo)=U2,

Hence the equation

vQ = V (u + Wo) = uv, etc.

aecomes

.(671),

which is identical with our previous equation of motion (456), and there are

of course two similar equations obtained from the general equation by putting

Q = v and Q = w respectively.

From these three equations and equation (670) we can obtain an equation

which does not contain X, Y or Z, and which is therefore true for a gas

independently of the action of external forces. Effecting the elimination

of X, Y and Z, this equation is found to be

or, arranging the terms in a form more convenient for use,

+ AQ,

DQ dQ Duq _ dQ Dvo dQ Dw^
Dt duo Dt dvo Dt dwo Dt

.l[-|(,u«) + gjl<.0,> + |(.55)*|(.I»)
!]

+ AQ...(672).

In general Q will be a function of Uq, Vq, Wq and of the mean values

U2, uv, etc._ It is clear that the bracket on the left-hand side will be the

value of DQ/Dt calculated upon the assumption that u^, UV, etc. are functions

of the time, but that Uq, Vq, w^ are independent of the time.
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Special values for Q.

339. The equation just obtained is the general equation expressing the

transfer of Q when there is only one kind of gas. Maxwell uses this same
equation (672) for the investigation of the phenomena of viscosity and
conduction of heat, regarding viscosity as a transfer of momentum and

conduction of heat as a transfer of energy.

The values of Q must, however, be different for the two phenomena, and
we shall proceed by finding the special forms assumed by equation (654)

when Q has the requisite special values.

I. Q = u'-\-v' + w\

340. Let us first put

Q = u' + v^ + w^

= Wft2 + Vo' + Wo^ + U2 + V2 + W2 + 2WoU + 2VoV + 2WoW.

Thus Q = Mo" + Vo' + Wo^ + u^ + V^ + W2,

uQ = U (U2 + V« + W2) 4- 2WoU2 + 2WoUV + 2WoUW.

We are assuming the molecules to be point centres of force, so that their

only kinetic energy is energy of translation. Hence, by the conservation of

energy, we may take AQ = 0. The equation now becomes

D
VjyiU^ + S/^ + W^)

= S

= 2

-^ {vU (U2 + V2 + W2) + 2vUoU^ + 2vVoU\f + 2i/WoUW|
da;

+ 2^o||^(l^U^) + |(^UV) + g^(.UW)}_

d_

dx
-5^{i/u(U2+ V2 + W')} - 2i/( u^y + uv-^ + uw

a.)]
..(673).

341. We shall require to give other values to Q in equation (672), but

in calculating these we shall find it adequate to obtain a first approximation

by neglecting deviations from Maxwell's law of distribution of velocities.

We accordingly take

uFj = V2 = w* = g',

uv = vw = wu = 0,

and the equation reduces to the simpler form

'jg_aQg^o_agiM_aQi)wo"
Bt duo Dt dvo Dt dwo Dt

= % -h^-^Q)Sl-M)dx duo dx
+ AQ. .(674).
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11. Q = u\

342. We first use this equation by putting

Q = u2 = V+2^^oU + U^

so that Q = Uo^-¥q, uQ = 2wog', wQ = \nQ = 0,

^l = 2u ^-5 =^ = 0.
9wo "' dvo dwo

Then the equation becomes

= -2,;q^ + Au^ (675),

and there are of course two similar equations for u^ and i;^.

From the conservation of energy, A (u^ + v^ + w^) must vanish, so that on

adding together the three equations of the type (675) we obtain

4^-^H^°4"+^") («^«)-
dy

On elimination of -^ between this and equlition (675) we obtain

vq
da; 3 \dx dy dz J

= Aw2 (677).

343. Adiahatic Motion. Incidentally we may notice that the equation

of continuity (665) may be expressed in the form (c£ equation (669))

Dv /duo dVo 9W(

Dt \dx dy dz

and this, in combination with (676), gives

1%_21^_
qDt 3vl)t~

On integration, it appears that j- {qv ~ ^) is zero, so that as we follow an

element of gas in its motion, qv~^ remains constant. The value of q is

however \ C^ or p/p, so that this result simply expresses that, following the

motion of an element of gas, we must have

pp ' = constant (678).

This is the particular case of the general adiabatic law of § 262, obtained

by putting 7 = f, this being the value appropriate to point centres of force

for which all the energy is translational.
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III. Q = uv.

344. We next put Q = uv in equation (674). We have

Q = (Uo+ U) (Vo 4- V) = Wo^o, ^ = Voq, \fQ = Uoq, WQ = 0,

dQ
duo "'

dvo dwo
= 0,

so that equation (674) becomes

= - ^(-M)+^AvUoq) + ^0 g^
(vq) + ^0 g- (vq) + A (uv),

giving, upon simplification,

.(679).

345. Lastly, in equation (674) we put

Q = u (it^ + ?;2 + ^^2)

= (Wo + U) (Wo' + Vo" + Wo" + 2itoU + 2VoV + 2WoW + U^ + V^ + W2),

so that Q = Uo {u^ + v^^ + w^) + 5uoq,

UQ = (3wo' + Vo' + Wo==) 9 + UHU^ + V2 + W2), vQ = 2uoVoq, wQ = 2^<oWo9,

^ = 3wo' + ^o' + W +5q, ^ = 2moVo, ~ = 2uoWo.

From Maxwell's law it is easily found that

3
u^ =

4^2m^
= 'iq^, U2V2 = U2W2 = q^, U2 (U2 + V2 + W^) = oq^

Hence on putting Q = u{u^+v'^ + vF) in equation (674), we obtain

^u^v ;m = - 3^ 1^ ('^^o' + ^o' + ?^o' + 5^) q]-^ {2uoVovq) - ^ (2uoWovq)

/) 7) 7)

+ (3i(o' + Vo' + Wo' + 5q)^ (i/g-) + 2woVo g- (»^5) + 2«o'M^og- (I'S)

+ Aw (^2 + ^2 ^ ^2^

g^ (3< + Vo' + Wo' + 5?) + g- (2W0V0) + ^ (2wow;„)

+ Am (u^ + v'^ + vf).

If we substitute for DqjDt from equation (676) and further simplify, this

reduces to

2qu^ 2 ?^ - ? f^ 4- — +—

^

9ic 3 \ 8ic 3V dz

)

+^«-(s4")+'^-f^"-'^)+^4-!=^"('"+"'+»^)
•(«>•
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Calculations of ^Q.

346. The various equations we have obtained depend on the values

of AQ, where by definition (equation (663)) AQ is such that the increase

in XQ caused by collisions of all kinds is AQ per unit volume per unit time.

To evaluate AQ we must return to the dynamics of collisions, which were

worked out in detail in §§ 305—310 of the last chapter for the general law of

force WiTWg iTr""*.

As before, let there be two kinds of molecules, of masses m^ and m^

respectively, and let AQ for the gas of the first kind be divided into two

parts, liOt

AQ = AiiQ + A,2Q,

where AnQ, A12Q are the changes in SQ caused by collisions with molecules

of the first and second kinds respectively.

Let [Q] denote the change in the value of Q for a molecule of mass Wi

and velocity-components u, v, w produced by collision with a molecule of

mass wis and velocity-components u', v', w'.

The number of collisions of this type is given by formula (557) on p, 228.

Multiplying by [Q], and integrating over all collisions which occur per unit

time per unit volume, we find

A12Q =
1 1

1
1 1 1 1

1 [Q] ^1^2/1 (Wj ^, *y)/2 (w', v', w') dudvdwdu'dv'dw'Vpdpde

(681),

where all the symbols have the same meaning as before. Using the value

for pdpde given in § 311, this becomes

A,.Q = v^vA('"h + m,)K}^^jjjj\jf,(u,v,w)Mu,v',w')V ~T^iJp

X dudvdwdu'dv'dw' . . ,(682),

where Jp=\ [Q^adade (683),
J a=0 J e =

The value of. [Q] for any single collision is given at once by the equations

of § 310, which can be written in the form

M = M + ?— [2 (u' - u) cos^ ^ (9' + V F'' - (w' - uf sin 6' cos (e - (o^)]

(684),

v = v + ^— [2 (v - v) cos^ :^^' + \/V^-{'i/- vf sin ff cos (e - Wg)]
Ttlri -r I7I2

(685).

and a similar equation for w. Here ft>i = 0, being introduced merely to

maintain symmetry, while from equation (599),

{u' — u)(v'-v) .-^_,
cosG)2 =—. - (686),

J{V^-{u'-uy){V^-{v'-vy) ^ ^

and there is a similar equation for cos Wj.
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Introduction of the Law of the Inverse Fifth-poiver.

347. The value of [Q] being obtained from these equations, we can

without trouble evaluate the integral Jp given by equation (683).

The further integral (682) involves the laws of distribution /j^ f and so

cannot in general be evaluated unless these laws of distribution are known.

But the finding of these laws of distribution in the general case is just the

difficulty which was found in the last chapter to be insuperable. It was

there seen that the laws of distribution could be obtained only in the one

special case of s = 5.

Maxwell's theory is, for this reason, confined entirely to the law of force

s = 5. For this law of force the factor V s-i disappears entirely from the

equation (682) for A12Q, and this produces great simplification. The equation

becomes

AjgQ = V1V2 'J{m-^ + viz) K \jj\\\ Jp (/i dudvdw) (/o du'dv'dw') . . .(687),

and we notice that the integral on the right is simply the value of Jp

averaged over all molecules of the first kind and also over all molecules of

the second kind. Owing to this simplification, we shall find that it will

never be necessary to introduce actual expressions for the law of distribution.

We now proceed to calculate the values of AQ for certain values of Q.

Calculation of Au.

348. Since 2w is unchanged by collisions between molecules of the same

kind, it is clear that AnW will vanish, and we shall have Ait = AjgW.

For the value Q=u, [Q] or u — u is given directly by equation (684).

On calculating Jp by equation (683), the term in cos (e - coi) disappears on

integration with respect to e, and we are left with

/p = 27r "^— iu' — u) cos^ A 6' ada.
J a=o m^ + m^^

Following Maxwell, we write

47r["""°cos2^^'ac?a=^,
'.

(688),
.' a=0

the quantity A^ being a pure number, and identical with the quantity

denoted by /i (5) in the last chapter. Maxwell gives tables for the evalua-

tion of Ai by quadrature in his original paper, and finds

4i.= 2-6595 (689).
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We now have ./p = AAu' — u\

and hence equation (687) gives immediately

Au = A^^u = viv^m^ \

/

Ax(uo2 — Uo^) (690),V mj + Wj

where Woa is the average of u' for all the molecules of the second gas, and so

is the mass-velocity of the second gas, and similarly for Uq^ .

The value of Au is required for the problem of diffusion in which two

gases are necessarily present. In the remaining calculations for AQ, which

are needed for problems of viscosity and conduction of heat, we shall suppose

that only one gas is present, so that we take Wj = Wg = m.

Calculation of Au^ and Auv.

349. Putting vfii — m^, the value of \u^'\ or v? — i<? is found from equation

(684) to be

\y?] = {m + {u' - u) cos" i<9' + i V 72 - (u' - uy sin 6' cos e^ - u\

whence we obtain (equation (683))

Jp = 27r
f

"
{2u {u' - u) cos^ ^6' + (u - uf cos* ^0' + ^{V^-{u' - uf) sin^ ff] ada

Jo

(691),

= 27r
f

"^

{(w'2 _ ^2) cog2 ^ ^' + 1
I
_ 2 (w' _ w)2 + (v' - vf + {w - wf] sin^ 0'] ada

Jo

(692).

Equation (682) now gives

Au^ = ^irv^ sf^mK . J (- 20"' + v^ +"^^2J "
gjnz ^'„^„ ...(693).

.'0

Maxwell writes tt %\x:^0'ada = A^ (694),
Jo

this being identical with the I-ii^) of § 317, and finds

^2=1-3682 (695).

The value of A\i? is now

Aw2 = ^1/2 V2^^^2(- 2112 + v^ + w^') (696).

350. We also require Auv, but this is more easily found by transformation

of axes than by direct calculation.

Let us write Ix + my + nz instead of x, so that we write lii + wr + mo
instead of u. The left-hand member of equation (696) becomes

VAu^ Jr'il'mAuv -Y ,.,.

J. G. 17
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The bracket on the right-hand may be written

U24. V2 + w2 — 3U''',

and therefore transforms into

_ , , .
(^2 + ^^2 ^ ^2-) fu2-l- V2 + W2 - 3 (^U + mv + ww)'|.

As in § 318, we may equate coefficients of 2Zm, and obtain at once

Auv^-^v-'s/^mKA^uy (697).

Calculation of A [u {u^ + v^ + vf)].

351. To evaluate Aw {v? + v^+ w^), we need the complete system of three

equations of the type of (684).

On putting mj = m2, equation (684) becomes

u = u + a + a' cos{€ —(i)j) (698),

in which
0'

a = (u' - u) cos" g , a' = ^\/V^- (w' - uf sin 6',

2

and Wi = 0. Similarly, we have from the two remaining equations,

v = v + b+b'Gos{e-co,) (699),

-^ w = w + c + c' cos (e — cos) (700),

where b, b' and c, c' are obtained from a, a by replacing u by v and w
respectively, and, by equation (686) and its companion,

{u - u) (v' -v) .

cos coo = -.—rr, sm^ ff

,

^
4!ab

. (u' - u) {w -w) . „ ^,
COS (w, = /"T-,^ sm^ 6

.

Squaring the system of three equations (698), (699) and (700), and

adding,

u- + ^2 + w^ = 2 (w + a)^ + 22 {u + a) a' cos (e - coi) + Sa'^ cos^ (e - w^),

so that

u (u2 + v^ + W) = (w + a) 2 (ti + a)2 + 2 (m + a) 2 (it + a) a' cos (e - Wj)

+ (m + a) 2a'2 cos^ (e - o)i)

+ a' cos e2 (m + a)^ + 2a' cos e2 (it + a) a' cos (e — twi)

+ a' cos e2a''^ cos^ (e — &)i).

Hence, on integration with respect to e,

= - utu' + {u + a) (2 ("M-f- a)2 + ^2a'^) + 2a'2 (w + a) a' cos o), . . .(701).
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To simplify this, we notice that

^aa' cos 0)1 = 0,

%{u-\-af= 2^2 + 2Sm {u - m) cos^" ^^ + Y' cos* ^^,

^Sa"^ = \ sin2 ^'S (V - {u' - w)^) = V sin^ ^^ cos^^'

;

so that we also have

2 (w + a)2 + ^ Sa'2 = Xm'' + 2 (w'^* - u^) cos^ ^ ^'.

It is clear therefore that the right-hand side of equation (701) can be

expressed as the sum of two terms multiplied by cos^|^' and sin^^'

respectively. Simplified as far as possible, we find for this expression the

value

+ i sin^ d' [u (22//2 _ 2^2 - luu') + u {2tu^ - 2w'- - tuu')].

After integrating with respect to a, and averaging over all values of the

velocities, it is obvious that the first line vanishes, while from the second we
obtain, by the use of equation (682),

{4wo (w*^ + v^+ w^) - 2w {u^ + v^ + iv^) - 2 {u^u^ + v^uv + Wouw)].

Replacing w by Wo + U, etc, and also writing

'n
= ^\/2mKA^ (702),

this equation becomes

Au (m^ + y^ 4- vfi)

= 1 171^2 1^^ (ij-2 ^ v^ 4. w^) - 3 (wo u* + ^0 uV + Wo uw) + 3u(U2 + v^ + w^)j . . .(703).

Final Equations.

352. Substituting the value which has been obtained for Aa^ from

equation (696) into equation (677), we have

Similarly, substituting the value obtained for Awv from equation (697)

into equation (679), we have

"--—Hit+I) (^«^).

and lastly, substituting the value of Au {u^ + v'^ -{- w^) just obtained into

equation (680), we have, after simplification from equations (704) and (705),

|i7i/Lr(uM^vM^=-55?| (706).

We have now obtained a sufficient amount of mathematical working

material, and proceed to the discussion of physical phenomena.

17—2
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Time of relaxation.

353. Let us in the first place consider a gas in which the law of distribu-

tion is initially some law other than that of Maxwell. Our equations enable

us to determine the rate at which the gas approaches the steady state. We
take the simplest case, and suppose that there is no mass-motion, so that

Uq = Vq = v)q—0; we also suppose that the law of distribution is the same

throughout the gas, so that iP, UV, etc. are constants in space. With these

suppositions equation (672) becomes

^f = AQ (707),

expressing that the whole change in Q is caused by collisions. If we put

we have, from equation (696),
'

AQ= - |i/2 V2^i^^2 (ir^ - V2)

= - 7;i/2 (02 - V2),

giving upon substitution in equation (707),

7)

(U2_V2)=-,;i;(U2-V2) (708).

Similarly, taking Q = uv, and inserting into equation (707) the value of

Auv given by equation (697), we obtain

|(uv) = -^^(uv) (709).

Thus U2 — v^, uv, etc. satisfy an equation of the form

of which the solution is

shewing that
<f>

decreases exponentially with the time, at such a rate that it

is reduced to 1/e times its original value in a time l/rjv. This time is called

by Maxwell the " time of relaxation."

This time of relaxation measures the rate at which deviations from

Maxwell's law of distribution will subside. A glance at equations (710)

below will shew that it must also measure the rate at which inequalities of

pressure must subside.

Numerical estimates for the value of 17, as given by equation (702), are

not available, so that it is not possible to find the absolute value of this

" time of relaxation." We shall, however, be able to compare it with the

known values of coefficients of viscosity, and shall find that it is extremely

small (cf. § 355, below).
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Viscosity.

354. We have already seen (§ 234) that the system of pressures at anj'

point in the gas is given by the equations

„ _ \ (710).
Py^ = puv, etc.J

To arrive at these formulae we have taken -ur^y; = tsxy-- . . =0 in equations (459),

This does not mean that we neglect the intermolecular forces which vary

inversely as the fifth power of the distance, for we have already taken full

account of these forces in supposing that two molecules are in collision as

soon as these forces become appreciable ; in neglecting the system of pressures

'^xx, ""^xy, etc. we are merely assuming that no forces exist other than those

which vary inversely as the fifth power of the distance.

Let us write

p = HPx<c + Pyy+Pzz) = y(^' + y' + V^) (711),

without at present attaching any physical interpretation to p. We have

already supposed as a first approximation that JJ^ = \r^ = \N^ = g, ao that p = pq,

and we may now replace q by pjp.

From equation (704) we have

Pxx = P^ = ^P (U2 + V2 + W2) - ^p (V2 + W2 - 2U2) •

and similarly, from equation (705),

^»-''°"— f.(s"+S) (™)-

These pressures agree exactly with those giving the components of

pressure in a viscous gas (cf equations (634) and (635) of § 324) if we
take p to be the hydrostatic pressure, and suppose k, the coefficient of

viscosity, to be given by

K = ^ (714).

If we give to p its usual value vRT, this becomes

- =V <"5>'

so that K is found to be independent of the density, and directly proportional

to the temperature.

355. The physical discussion of this and other equations obtained from

Maxwell's theory is reserved for later chapters. We may notice, however,

in passing that equation (715) enables the value of ?;, and hence of the time

of relaxation, to be deduced when k is known.
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For instance, for air at 0° C, the value of k is "000172, and

i2T = 3-69xlO-",

so that 7] = 2*15 X 10~^°, and the time of relaxation is

— = ^

—

zr^. seconds.
'qv 6 X 10^

It is, as we should expect, comparable with the time of describing a free

path.

Conduction of Heat.

...(716).

356. If we take Q to be 0^ + 72 + w^ equation (673), multiplied through

by m, becomes

I lpu(u> + v. + w=)l - 2, (u^|«+ u-v|« + uw|»

This is the equation of transfer of Q, when Q is taken to be uM-vM^ w^.

It is therefore the equation of transfer of energy, and this, in the Kinetic

Theory, is the transfer of heat.

Writing U^ + V^ + w^ = 85, the left-hand member becomes 3/)^ . As

regards the first term on the right-hand side, we have from equation (706)

15mg dq
pu(u'+v.+w')=-2;^g|.

The remaining terms on the right-hand side, containing IT^, Ov, etc., are given

by equations (712) and (713). On substituting these values in equation (716),

we obtain

^ Dq ^ d flomq dq\ ^ fduo dvo
,
3wo\

4>mq (fduoV ^ fdVoV ^ (dw,

^mq fdUo dVo dWoV 2mq ^ fdwo a^oV .w, ^x

Dq . .

In equation (676) we obtained a value for ^ on the supposition that

Maxwell's law was true at every point. The present equation is the

generalisation of equation (676) for the more general case in which Maxwell's

law is not assumed to hold.

If there is no mass-motion (uq = Vq = Wq = 0), the equation reduces to

Q ^_.^^ /ISmg^Bg-N
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and since mq^mXP^RT, this is the equation of conduction of heat in a gas

at rest. By comparison with Fourier's equation of conduction of heat,

we obtain for the coefficient of conduction of heat the value

^=^(7, =^a (718),

or, introducing the coefficient of viscosity k from equation (715),

^ = f/c6V (719).

The physical significance of this equation will be discussed later.

Energy.

357. On substituting the values which have been found for ^, k, etc., we

find that equation (717) assumes the form

Obviously the term on the left-hand side is the increase of heat-energy of

an element of the gas. On the right-hand side, the first term is the increase

of heat which ordinary physics regards as due to conduction, the second term

is that due to adiabatic expansion or compression, and the third term is that

which ordinary physics attributes to the action of viscosity, being in fact twice

the "dissipation function" of the viscous motion f.

To the Kinetic Theory, however, conduction of heat, change of tempera-

ture resulting from adiabatic motion and " heat generated by viscosity " are

all equally resolved into the transfer of energy by molecules, so that to the

Kinetic Theory the equation just obtained expresses nothing more than the

conservation of this energy.

Difusion.

358. In § 337, we obtained the general equation (667)

dQ

where 2 denotes summation with respect to the three coordinate axes x, y
and z.

* Maxwell, as the result of an arithmetical mistake, gave the numerical factor as I in place

of # . The error was pointed out by Boltzmaun and Poincar6.

t Cf. Lamb, Hydrodynamics, p. 518.
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This equation may be used to determine the value of the coefficient of

diffusion. We shall suppose there are two kinds of gas, distinguished by the

suffixes 1, 2, and these will be supposed to be diffusing into one another in a

direction parallel to the axis of x. There will be an equation of the form of

(720) for each kind of gas.

We may suppose that there are no externally applied forces, so that

X = in equation (720). The motion of diffusion may be supposed so slow

that squares of the mass-velocity may be neglected, and since the motion is

entirely parallel to the axis of x, we may put ^ = —= 0.

With these simplifications equation (720) reduces to

In this equation, we put Q = u, so that Q=Uq, the mass-velocity parallel

to Ox. Neglecting u^, we may also put

Thus the term — (vuQ) reduces to ^j-— ^- , since h, which measures the

o

temperature, is not supposed to vary with x. The term Q ^ (vu) becomes

Mo^ {vUo\ Q-nd this, being of the second order of small quantities, may be

neglected. Further, in steady motion, the time-differential will vanish, and

the equation reduces to

iL^^" (^^D-

The value of Aw is not zero, because collisions with molecules of the

second kind change the total momentum of the first gas. In equation (690)

we obtained the value of Aw for the first gas in the form

Aw = ViVzm.^^—-— Ai (mo2 - Wo]),

where Wqi, Wo2 are the values of Uq for the first and second gas respectively.

On substituting this value for Am, equation (721), for the first and second

gases, yields equations which can be put in the form

dx

7) / TT
= - i^ = 2/m/i 1/2^1m2 */ A^ (mo2 - Woi) (722).

ox V Wi + Wa

359. The equation of equilibrium in the gas is

?^ =
dx '
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and on substituting for p its value - ^ ^
, this requires

1'=-!^ c'^y

In order that the pressure may continue to maintain equilibrium, v^ + v«

must remain the same at all points of the gas throughout the whole time.

Thus the total flow of molecules across any plane must be zero, and this

requires

vi Urn + v2Uo2 = (724).

The flow of molecules of the first kind per unit area per unit time,

namely i/iW-oi, is however equal to — !Di2 ~ (cf. below § 435), where 2)i2 is the

coefficient of diffusion from the first gas into the second. Similarly of course

we must have

-2)21^'= 1^2^02 (725),

whence equations (723) and (724) shew that !Di2 and 3)21 must be the same :

there is only one mutual coefficient of diffusion between the two gases.

Instead of expressing )£)2i in the unsymmetrical form of equation (725),

we may, with the help of equations (723) and (724), express it in the form

2^12 K^ (vi + ^2) = - ViUoi (vi + V2) = Vi V2 (wo2 - Uoi) (726),

which is symmetrical.

Comparing the equation just found with equation (722) obtained from the

dynamics of collision, we find at once

Ij —

-

1 /rrh+m^
,m,A,{v, + v,)V K ^'^'^•

For the diffusion of a single gas into itself, this becomes

hpA,'^2mK 2hpA,v

where rj is introduced from equation (713). If we further introduce k, the

coefficieni

given by

coefficient of viscosity, given by /c = ^j— , the coefficient of diffusion is

^ =^'^ (^29),

or, introducing Maxwell's numerical values already given for Ai and A2,

!D = 1-5043- (730),
P

The physical discussion of these equations is reserved for Chapter XIII.



CHAPTER X

THE FREE PATH

360. In the two preceding chapters we have seen how problems of

viscosity, conduction of heat, diffusion, etc. can be reduced to a problem

of the dynamics of collisions. We shall in subsequent chapters see how
these same problems can be treated by a study of the problems associated

with the free path. For this and other reasons, the present chapter is

devoted to problems connected with the free path in a gas, the molecules

being assumed for this purpose to be elastic spheres.

Length of mean Free Path.

361. In § 33 we gave a calculation of the mean free path in a gas. We
shall now give a more detailed investigation applicable to the free paths of

molecules in a mixture of gases, the molecules of the different gases being

of different sizes, and shall at the same time examine the correlation between

the velocity of a molecule and its probable free path.

We shall suppose the constants of the molecules of different types to

be distinguished by suffixes, those of the first type having a suffix unity

(vi, rrii, o-j, ...), and so on.

We shall also require a system of symbols to denote the distances apart

at collision of the centres of two molecules of different kinds. Let these be

Sn, 8i2, S23, etc., Spq being the distance of the centres of two molecules of

types p, q when in collision. Obviously, then,

S^, = i(a, + a,), Su = <r^ (731).

Maxwell's Mean Free Path.

362. As in expression (48) the number of collisions per unit time

between molecules of types 1 and 2 and of classes A and B respectively

(pp. 18, 19) is

ViVifi {u, V, w)fz (u', v', w') VSi^ cos Odudvdwdu'dv'dw'do) .

.

.(732),

where V is the relative velocity, and dw the element of solid angle to within

which the line of centres is limited.
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Replacing /i, /a by their values appropriate to the steady state, and

carrying out the integration with respect to dw, the number of collisions per

unit time is found to be
as

^^^^^p'^':^^ (733)^

this expression being exactly analogous to expression (50), and being obtained

in precisely the same way.

Let the velocity-components u, v, w, it', v', w' now be replaced by new
variables u, v, w, a, /3, 7 given by

u= ——•—'—
, etc.: a = u -u, etc (734),

so that u, V, w are the components of velocity of the centre of gravity of the

two molecules, and a, yS, 7 are as usual the components of the relative

velocity V. We may put

u2 + v2 + w2 = c=, a^ + ^'' + y- = V%

so that m,c' + m^G'^ = (m^ + m^ c^ + J?^l^^ Y\
m^ + m^

We readily find that

d(u,a) _
d(u,u')

'

so that dudu = duda, and expression (733) may be replaced by

TTv.vJ—V-^^ •-
""^"^"'^ -i]VS,^^dudYdMvdad0dy

(735).

363. On integrating with respect to all possible directions in space for

the velocity c of the centre of gravity, we may replace dudvdw by 4:7rc^dC',

while similarly, integrating with respect to all possible directions for V, we

may replace dad^dy by ^irV^dV. We accordingly obtain for the number

of collisions per unit volume per unit time for which c, V lie within specified

small ranges dcdV,

\Qv^vJi'mfm}S,^H L " "'i + "*2 J c^^F^c^c c^F ...(736).

Integrating from c = to c = 00 , the number of collisions for which V
lies between V and V -\- dV is found to be

and again integrating this expression from F= to F= cio
, the total number

of collisions per unit volume per unit time between molecules of types 1 and 2

is found to be

^''^«'»Vs(i;+«^)
("«>•
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364. This formula gives the number of free paths of the Vi molecules of

the first type in unit volume, which are terminated per unit time by molecules

of the second type. When the difference between the two types of molecules

is ignored, it reduces to twice expression (53) already found, the reason for

the multiplying factor 2 being that already explained on p. 36.

Expression (738) divided by Vi will represent the mean chance of collision

per unit time for a molecule of type 1 with a molecule of type 2. Hence

the total mean chance of collision per unit time for a molecule of type 1

must be

22-'AVK;s;+i) (^39)'

and the mean time interval between collisions is of course the reciprocal

of this.

The total distance described by v^ molecules of the first kind per unit

time is

v,c, =-^ (740),

while the total number of free paths described by these v^ molecules is equal

to Vx times expression (739).

By division, the mean free path for molecules of the first type is found

to be

Xx = ^
, (741).

V Wg

When there is only one kind of gas present, this reduces to formula (56)

already found.

An Alternative Calculation of the Mean Free Path.

365. There is another way of estimating the length of the mean free

path, as has already been indicated in § 33. According to this method

of calculation, the mean free path is not taken to be the mean of all the paths

described in unit time, but the mean of all the paths described from a given

instant to the next collision.

Let us fix our attention on a molecule of the first type, moving with

velocity c. The chance of collision per unit time with a molecule of the

second type having a specified velocity c' is equal to the probable number of

molecules of this second kind in a cylinder of base 7r>Sii2^ and of height V,

where V is the relative velocity.

The second molecule is supposed to have a velocity c'. Let 6,
(f)

loe angles

determining the direction of this velocity, measuring the angle between its
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direction and that of c, and ^ being an azimuth. The number of molecules

of the second kind per unit volume for which c', 6, ^ lie within small specified

ranges dc', dd', d<f)' is

p^l^) e-^'"'''\" sin eded<t>dc\

The result of integrating with respect to <}> is obtained by replacing d<l>

by 27r, and on multiplying this by irS^^Vy we obtain for the number of

molecules of the second kind which lie within the cylinder of volume irS^^V

and which are such that c', 6 lie within a range dc', dd,

2vA^ VTj^ma^Fe " ''"'^^'^ ^'2 gjn 0dddc (742).

When c, c' are given, the value of V depends on 6, being given by

F=2 = c2 + c'2 - 2cc' cos 6,

whence we obtain by differentiation, keeping c, c' constant,

VdV=cc^mddd,

so that expression (742) can be replaced by

2vA^ V^^T/^e- ^'"2''''

-

dc'VHV (743).

We can now integrate with respect to V, keeping c and c' constant. We
have

in which the limits for V are c + c' and c -< c'. Thus

{vHV=lc {& + 3c'2) when c' > c,

= f c'(c'2 + ^d") when c' < c.

Hence, as the result of integrating expression (743) with respect to V, we
find

when c'>c, |vA^ vWrn^^ e "
^'"2^"' q' (q^ + 3c'2) dc' (744),

when c' < c, ^vA^ ^^r¥^^ e '
^'^"'^- (c'^ + Sc^) dc' (745).

c

If we now integrate this quantity with respect to c fi'om c' = to c' = 00

(using the appropriate form according as c' is greater or less than c), we
obtain for the aggregate chance per unit time of a collision between a given

molecule of the first type moving with velocity c, and a molecule of the

second type,

ivA'^ ^7rh^' \r c'(c' + 30 e'-^'"^<^"dc' + T ^^^^t^ e'
^'"^''' dc']

(746).
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366. The former of the two integrals inside the square bracket can be

evaluated directly, and is found to be equal to

{2hm^c' + f

)

h^ 711.2

The second integral cannot be evaluated in finite terms. If, however, we

replace hm-^c'^ by y-, the integral becomes

1 Cc\hm.2 _ 2

—YrrJ yHf + Shm2C")e y dy,
c V A-'m/

which, after continued integration by parts with regard to y^, reduces to

1 C
rcslhm.-,

j=^^ |_ e
- ^''hc\ Vhm., (2Am2c2 + f) + f (^hm^c' + l)j ' e'y' dy

The sum of the two integrals in expression (746) is accordingly

^
If we introduce a function* "^{x) defined by

.(747).

.
CcxJhm^

^hm^ e

-

'""2*^ + {'Ihrn^e + 1)
|

'
e'y dy

L function* -^ifix) defined by

^{x) = xe-'''' ^-i%x-^\)\^ e-y''dy (748),
•'0

expression (747) may be expressed in the form

o

4c \h^mi

and hence if we denote expression (746) by 0i2, its value is found to be

0.. = '^^V(oVK;) (749).

With this definition of ©12 we see that when a molecule of the first kind

is moving with a velocity c, the chance that it collides with a molecule of the

second kind in time dt is ®^2dt.

367. If we change the suffix 2 into 1 wherever it occurs, we obtain an

expression ©^ for the chance per unit time that a molecule of the first kind

moving with velocity c shall collide with another molecule of the same kind.

By addition, the total chance per unit time that a molecule of the first

kind moving with velocity c shall collide with a molecule of any kind is

2@,, = 0,, + 0,2 + ®i3+ (750).

/x
2

e~y dy cannot be expressed ki simpler terms, so that \p {x) as defined by

equation (748) is already in its simplest form. Tables for the evaluation of \p (x) are given in

appendix B.
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In unit time the molecule we are considering describes a distance c, hence

the chance of collision per unit length of path is

1

c
S@« (751),

and the mean free path \c, for molecules of the first kind moving with

velocity c, is accordingly

^'=isr.
<"'>•

Tail's Free Path.

368. When there is only one kind of gas, this assumes the form

X, = ^=--
*'""' ^ (753),

• • . NTTVff- yjr (c vhm)

and from this formula we can without difficulty calculate Tait's expression for

the mean free path defined as explained in § 33. For, in a single gas, there

is at any instant a fraction

J
3^

^4>'rre-^^'^\^dc

of the whole number of molecules moving with velocity c, and therefore, on

the average, starting to describe distances c/0 each before collision. Hence
Tait's mean free path (X.^) is given by

^2'= Gi\/—r^'^^ "^^ c'dc = -J ,
, . (754).

This integral can only be evaluated by quadrature. The evaluation has

been performed by Tait* and Boltzmannf, who agree in assigning to it the

value 0'677, leading to the value for Xy which has already been given in § 33.

Maxwell's Free Path.

369. We can also deduce Maxwell's free path from the formulae obtained

in § 367.

Out of all the molecules of the first kind, a fraction

^^(^^p-km,c^C^dc

will be moving with a velocity between c and c + dc, and the chance of

collision per unit time for each of these molecules is 2©,«. Hence the

* Edin. Trans, xxxni. p. 74 (1886).

t WieTier Sitzungsberichte, xcti. p. 905 (1887) ; Gastheorie, i. p. 73.
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average chance of collision per unit time, for all molecules of the first

kind, is

or, from equation (749),

^*^'M^\\-.^c^^(,^;^^
(755).

S It IItg J Q

Putting c ^hnig = cc, this becomes

^wi^r-^/^^^,^
, (hmgy Jo ^ ^ ' ^ ^

Upon substitution for A|r(a;) from equation (748), this integral becomes
the sum of two integrals

-X^fl +M .00.^

J J

y'--:zr^
3^2

dxdy (757).

The first integral has for its value

~^V-^mgJ
while on writing y = Kx, the second integral

.(758),

x'(2aP + l)e \ '"'J dxdK
J J

4 \ nisJ4 V m.
dK

4 I nii^ \ mg) m^ \ m«/ r\
Adding this to expression (758) and simplifying, we obtain as the value of

expression (757)

2 m^V rrig

'

This is the value of the integral which occurs in expression (756). The
whole expression is therefore equal to

^-''^-Vk^+^j (" 9).

This is the mean chance of collision per unit time for a single molecule

of the first kind, and every collision terminates a free path of this molecule.

The total number of free paths described by all molecules of the first kind

per unit time per unit volume is therefore

n, = X2v,VgSjJll-+-) (760),V h \mi nig)

which is equal to Vi times expression (739), as of course it ought to be.
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The distance described per unit time by the z/j molecules of the first kind

in a unit volume is, as before, given by expression (737), so that the mean
free path, \i, of all molecules of the first kind is

'•" - '
(761).x,=

m.
agreeing with formula (741),

Problems connected with the Free Path.

Dependence of Free Path on Velocity.

370. The way in which \e depends on the value of c is of some interest.

The formula expressing \c as a function of c is, however, too complex to

convey much definite meaning to the mind, and we are therefore compelled

to fall back on numerical values. The following table, which is taken from

Meyer's Kinetic Theory of Gases (p. 429), gives the ratio of Xc (equation (753))

to Maxwell's mean firee path \ (equation (56)) for different values of c, from

c = to c = 00

.

cjc hmc^ X,/\ X/\,

00

0-25 0-3445 2-9112
0-5 0-6411 1-5604

0-627 i 0-7647 1-3111

0-886 1 0-9611 1-0407

10 1-0257 -9749

1-253 2 1-1340 -8819

1-535 3 1-2127 -8247

1-772 4 1-2572 -7954

2 1-2878 -7765

3 1-3551 -7380

4 1-3803 -7244

5 1-3923 -7182

6 1-3989 •7149

00 1-4142 •7071

Probability of a Free Path of given length.

371. It is of interest to find the probability that a molecule shall

describe a free path of given length.

Let f{l) denote the probability that a molecule moving with a velocity c

shall describe a free path at least equal to I. After the molecule has

described a distance I, the chance of collision within a further distance dl is,

by formula (751), equal to dljXc. Hence the chance that a molecule shall

describe a distance /, and then a further distance dl, without collision is

f{l)(l-dl/X,).

J. G. 18



274 The Free Path [cH. x

This must however be the same thing as f{l + dl) or

Equating these expressions we have

dl \c '

of which the solution is

f(l) = e-^l^c (762),

the arbitrary constant of the integi-ation being determined by the condition

that /(O) = 1.

By differentiation the probability of a molecule moving with a velocity c

describing a free path of length between I and I + dl is

e-'l^^c^ (763).

372. It is clear from the form of these expressions that free paths

which are many times greater than the mean free path will be extremely

rare. For instance, the probability that a molecule moving with velocity c

shall describe a path greater than n times \c is f{n\c) or, by equation (762),

e~'*. Thus only one in 148 describes a path as great as bX^, only one in

22,027 a path as great as lOXg, only one in 2*7 x lO"^ a path as great as lOOXc,

and so on.

The foregoing result applies of course only to molecules moving with a

given velocity c. At any given instant the fraction of the whole number of

molecules which have described a distance greater than I since their last

collision will be

/ 7r« r 4^c2g-ftmc2-z/x,^^
(764).

This function is not easy to calculate in any way. As the result of a

rough calculation by quadrature, I have found that through the range of

values for I in which its value is appreciable, it does not ever differ by more

than about 1 percent, from e~ '\ which is the value for molecules moving

with velocity Ij'^hm.

Law of Distribution of Velocities in Collision.

373. In many physical problems, it is important to consider the distri-

bution of relative velocities, ratios of velocities, etc. in the different collisions

which occur. We attempt to obtain expressions for various laws of distribu-

tion of this type.
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In formulae (744) and (745) we obtained expressions for the chance per

unit time that a molecule of type 1 moving with velocity c should collide

with a molecule of type 2 moving with a velocity between c and c' + dc'.

The number of molecules of type 1 per unit volume moving with a velocity

between c and c + c?c is

47rpJ~Je-f"'h''(^dc.

Multiplying expressions (744) and (745) by this number we obtain as the

total number of collisions per unit time per unit volume between molecules

having specified velocities within ranges dc, dc',

when c' > c,

ifp,vA^h'7rh^m^h-^^'"^''+'"-''"h'c'(c' + Sc'')dcdc .(765),

when c' < c,

-V«-
V,vA'h^mfi rru}e-^

("^^ c«+ »^c'n ^^>^ ^3^2 ^ ^'2) ^^dc (766).

374. We proceed next to find the number of collisions in which the

velocities c, c' stand in a given ratio to one another. Let c = kc', and let the

variables in expressions (765) and (766) be changed from c, c to k, c'.

Clearly the differential dcdc' becomes c'dKdc, and the two expressions become

when « > 1,

^v,vA^h^m,^m^^e-^''^^'''^''''' + '''^K{^K''^l)dKc'Hc' (767),

when « < 1,

^i-v,vA^h?mfni^-e-^''"^'^"'''^'''''^ic''{K'' + ^)dKc''dc' (768).

On integrating these expressions with respect to c' from c' = to c' = 00
,

we obtain the number of collisions for which k, the ratio of the velocities,

lies within a given range dx. The numbers are readily found to be

when /c>l, Bv^vA^i—%r^ ]
--^ -j dK (769),

V h ' (m^K' + Tn^f

when/c<l, 5v,vAH —jt^' )

^

\ dx (770).

The total number of collisions per unit time per unit volume may of course

be derived by integrating this quantity fi'om k = to k = 00 . It is found

to be

= 2...AViCi.+^j <"^>'

which agrees, as it ought, with formula (738).

18—2

•
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375. The law of distribution of k in dififerent collisions can be obtained

by dividing expressions (769) and (770) by the total number of collisions (771).

This law of distribution is found to be

when « > 1, 1 -I
(772),

- (wi + ma)^ {rriiK^ + m^f

when/c<l, x -^
-. (773).

^ (mi + ^2)2 {m^K- + m^y

The law of distribution of values of k when the molecules are similar is

obtained on taking m^ = m^. We must notice however that if we simply put

mi = ma in expressions (772) and (773) each collision is counted twice, once

as having a ratio of velocities k and once as having a ratio of velocities l/zc.

It seems simplest to define the value of k for a collision in this case as the

ratio of the greater to the smaller velocity, so that k is always greater than

unity, and we then obtain the law of distribution by putting mi = m^ in

expression (772) and multiplying by two so that each collision shall only

count once. The law of distribution is found to be

'-p^^'^dK (774),
\/2 (1 + «2)^

of which the value when integrated from /c = 1 to K=<Xi is unity, as it ought

to be.

Persistence of Velocity after Collision.

376. The next problem will be to examine the average effect of a

collision as regards reversal or deflection of path. We shall find that in

general a collision does not necessarily reverse the velocity in the original

direction of motion, or even reduce it to rest : there is a marked tendency

for the original velocity to persist to some extent after collision. It is

obviously of the utmost importance to form an estimate of the extent to

which this persistence of velocity occurs.

Persistence of Velocity when the molecules are similar elastic spheres.

2>n. Let us begin by considering two equal molecules colliding with

velocities c, c. In fig. 19 let OP and OQ represent these velocities, and let

R be the middle point of PQ. Then we can resolve the motion of the

two molecules into (i) a motion of the centre of mass of the two, the velocity

of this motion being represented by OR, and (ii) two equal and opposite

velocities relative to the centre of mass, these being represented by RP
and RQ.
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Imagine a plane RTS drawn through R parallel to the common tangent

to the spheres at the moment of impact, and let P', Q' be the images of P, Q

Fig. 19.

in this plane. Then clearly RP' and RQ' represent the velocities relatively

to the centre of gravity after impact, so that OP' and OQ' represent the

actual velocities in space.

378. In fig. 20 let the directions of motion relatively to the centre of

gravity before impact be AB, DE, and let those after impact be 5C, EF.

Then the line of centres bisects each of the angles ABC, DEF. Let us call

each of these angles <^, measured so as to be acute in the figure. Imagine the

point E surrounded by a circle of radius a (the diameter of a molecule) of

Fig. 20.

which the plane is perpendicular to the direction AB. Then in order that a

collision may take place, the line AB produced must cut the plane of this

circle at some point P inside the circle. Also, all positions of P inside this

circle are equally probable, so that the probability that the distance EP shall

lie between r and r+ dr is 2rdr/cr^. Since r = o- sin ^<^, this may be written

sin ^<f> cos i^(f> d<f>. This, then, is the probability that cf) shall lie between and

<^ + d<f>, and therefore that the angle which EF makes with DE shall
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be between <^ and <^ + rf^. The expression found is, however, equal to

^sm^di^ and therefore to that part of the area of a unit sphere for which

the radius makes an angle between ^ and
(f)
+ d<f> with a given line. It

follows that all directions for EF are equally probable*. Hence in fig. 19 all

directions of RQ', RP' are equally probable, so that the " expectation " of the

component of velocity of either molecule after impact in any direction is equal

to the component of OR in that direction.

379. Let us now average over all possible directions for the velocity of

the second molecule, keeping the magnitude of this velocity constant. In

fig. 21 let OP, OQ as before represent the velocities of the two colliding

molecules, and let R be the middle point of PQ, so that OR represents the

velocity of the centre of gravity of the two molecules. We have to average

the components of the velocity OR over all positions of Q which lie on a

sphere having for centre. It is at once obvious that the average component

Fig. 21.

of OR in any direction perpendicular to OP is zero. We have, therefore,

only to find the component in the direction OP, say ON. We must not

suppose all directions for OQ to be equally likely, for (cf. Chapter II) the

probability of collision with any two velocities is proportional to the relative

velocity. Thus the probability of the angle POQ lying between 6 and 6 + d6

is not simply proportional to sin dd, but is proportional to PQ sin 6 dd, for

PQ represents the relative velocity. The average value of the component

ON is therefore

r ON-PQ^inOdO

("PQsi
J

.(775).

sindde

This theorem was first given by Maxwell in 1859, Collected Works, i. p. 378.
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Let us now write OP = c, 0Q = c\ PQ = V,

so that F2 = c2 + c'2-2cc'cos^ (776).

Then 0N=^ (OP + OM) = He + c' cos 6)=^^ (3c=^ + c'^ -V^) .. .(777).

By differentiation of relation (776), we have VdV = cc sm6dd, so that

equation (775) becomes

/(3c. + C-. - FQ VHV_ 3c' + c'- /FW
"^

4c/F-^(iF ~ 4c 4c7F2rfF ^
'''

the limits of integration being from F= Ts^»*'^'to V=a-\-}\

Performing the integration we find that c c

'

when OC. o^ = ^^l|±|:i_
(779),

wheno<o', 0^=°5|^ (7«0)-

We notice that these expressions are necessarily positive for all values

of c and c', so that whatever the velocities of the two colliding molecules

may be, the " expectation " of the velocity of the first molecule after collision

is definitely in the same direction as the velocity before collision. Naturally

the same also is true of the second molecule.

If we denote ON, the " expectation " of velocity after collision of the first

molecule in the direction of OP, by a, then the ratio - may be regarded as a
c

measure of the persistence of the velocity of the first molecule.

Formulae (779) and (780) give the values of a, and hence of the persistence

- . It is at once seen that the values of - depend only on the ratio - , and not
c c c

on the values of c and c' separately. If, as before (§ 374), we denote - by «,

c

the values of the persistence are

wnen/e>l, - =
-, r> o /o »

—
t\ ('ol)>

c 10/c2(:3a;2 + 1) ^ ^'

-''-'<i-
^ " =57^ (^«^)-

380. These expressions are too intricate to convey much meaning as they
a

stand. The following table gives numerical values of the persistence -

corresponding to different values of k, the ratio of velocities:

^,= X 4 2 H 1 I i 1

" = •500 -492 -473 '441 -400 '368 '354 -339 '333
c

^= i i I 1 H 2 4 00
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It now appears that the persistence is a fraction which varies from 33J to

50 per cent., according to the ratio of the original velocities. From the values

given, it is clear that we are likely to obtain fairly accurate results if we
assume, for purposes of rough approximation, that the persistence is always

equal to 40 per cent, of the original velocity.

381. By averaging over all possible values of the ratio k we can obtain

an exact value for the mean persistence averaged over all collisions.

Each collision involves two molecules of which the roles are entirely inter-

changeable. Let us agree to speak of the molecule of which the initial

c
velocity is the greater as the first molecule, so that - or /c is always greater

c

than unity.

The persistences of the velocities of the two molecules involved in any

one collision are respectively

15a;^ +1 , 3 + 5/c2
and

10/c^(3«2+l) 5(3«^+l)'

the first of these expressions being given directly by formula (794), while the

second is immediately obtained by writing - for k in expression (782).

The mean persistence of the two molecules concerned in this collision,

being the mean of the two expressions just found, is

20/^2(3/^^+1) ^ ''

A few numerical values of this quantity are found to be

:

/c=l liH 2 3 4 00

mean persistence = "400 -401 -404 -413 '415 -416 -417

The law of distribution of values of k in the different collisions which

occur has been found in formula (774) to be

-~ ^-^,dK (784).
\/2 (1 + k'T^

Multiplying together expressions (783) and (784) and integrating from

K = \ to K= cc , we obtain for the mean persistence of all velocities after

collision

r 25^_±J«!±i ,_ 1 + JL, ,og. (1 + V2) = -406.
''1 4V2«:(1 +K''f 4 4V2

Thus the average value of the persistence is very nearly equal to |, the

value when the molecules collide with exactly equal velocities.
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Persistence when molecules have different masses.

382. The calculations just given apply only when the molecules are all

similar. Let us now examine what value is to be expected for the persistence

when the molecules have different masses and sizes, but are still supposed to

be elastic spheres.

Let us consider a collision between two molecules of masses m,, wi, and of

diameters o-j, <r^. Let their velocities be &,1( respectively as before, and let

their relative velocity be V.

It is clear upon examination of §§ 379, 380, that all the analysis of these

sections will be directly applicable to the present case, the only alteration

being that S^^ (cf. § 361) must replace cr as the distance BE between the

centres. Thus Maxwell's result is still true ; all directions are equally likely

for the velocities after impact relative to the centre of gravity, and' the ex-

pectation of any component of velocity after collision is exactly that of the

common centre of gravity.

We may accordingly proceed to average exactly as in § 379. But if OR
in fig. 21 represents the velocity of the centre of gravity, R will no longer be

the middle point of PQ ; it will divide PQ in such a way that m^RP = m^RQ.
Thus in place of relations (777) we have

m^OP ^ m^OM miC + m^c' cos0N=
Wij + 771-2 W^l + W-2

^Tn^m^^^m,
(^^^^^^^^^ ^^,y

m^ + m^ mi + m^

So long as c and c' are kept constant we can average this exactly as before.

It is clear that the first term — ? c, being constant, is not affected by
mi + mg "^

averaging, while the average value of the second term '^— [c + c cos 6) is
jjo-^ T" m^

2m
equal to ——^— times the average of the term ^(c + c cos 6) already found

in § 379.

Hence, if we denote the persistence - when the two masses are equal by
c

(~j , we shall have, in the general case in which the masses are unequal,

-= JL-^4. ?_ (_ (786).
c mi + ma mi + m^KcJe

This gives the persistence of the velocity c of the molecule of the mass

w,, the values of l-j being given by the table on p. 279.
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383. If we assume as a rough approximation that the value of (-) is

equal to '400 regardless of the ratio of velocities /c, then equation (799) reduces

to the approximate formula

« ^ ^1 - i^2 /^g^^
c mj + m2

This formula, however, must not be applied when the ratio — is either
Iftlo

very large or very small.

When —^ is very small, c will be large compared with c in practically all

collisions, so that the appropriate value to assume for ( - j
is that corresponding

to K = oo , namely (-) =^, and from equation (786) we obtain the approxi-

mate formula
"" ^^ ^^^ small^ (788).
c mi + m^ \7n^ )

We notice that in the limit when Wi vanishes in comparison with Wg, the

persistence vanishes. Indeed this can easily be seen directly : at a collision

the light molecule simply bounces off the heavy molecule ; all directions can

be seen to be equally likely by the method of § 380, and therefore the per-

sistence is nil.

At the opposite extreme, when ~ is very large, the appropriate values
7YI2

to assume are /c = and [-] = ^. The approximate formula derived from

equation (786) is now
a _ mi — ^Wa /Wi

large (789).
C Wj + Wa \m2 J

In the limit when mo, vanishes, the persistence becomes equal to unity.

This also can be seen directly : the heavy molecule merely knocks the light

molecule out of its way, and passes on with its velocity unaltered.

384. In place of these approximate formulae, it is quite feasible to obtain

a formula accurate for all values of wii/ma by averaging the exact equation

(786).

When /c> 1, the value of [- ) is (by formula (781))

10/cH3«:^ + l)'

while the law of distribution of the kb is (by formula (772)),

5 mi'mi /c(3/c^ + l) •,

X
~^ " i^*^-

2 (wi -H ma)^ (m, k" + m^)^
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When K<1, the corresponding quantities are (from formulae (782) and

(773))
S/c'' + 5 ,5 Wi^wo^ K- U'' + 3) J

and — "
1 7 dK.

5 («2 +3) 2 (wi + Wa)* (w, «;2 + mj)2

Hence the average value of (-) is given by

/a\ _5 m-^^rrh^ V [^ {^k" + b) k^cLk T* (15/c^ +l)c^tf

^^^« 2 (t/Ii + Wa)^ L-/o 5 (t^ia;- + 7^2)^
^

'^ 10/c (jni/c^ + wi,)^ J

The value of this expression is seen to depend on -^ only. Putting

— = u, its value is found to be

,.
aog(ViT7:^ + ;.) + ^^-^^^^ + ^^^-^^-^ ...(790),

and on substituting this into equation (786) we obtain a formula giving the

average persistence of velocity for any ratio of masses.

385. It is readily verified that when /a = 1 the value of this persistence

is "406, as already found in § 295. •

When ft is very small, formula (790) reduces to

/a\ 1 2 4
y-) =

3 + jg
/i' ~

35
/*' + t^rms in ix\ etc.,

and similarly when jm is large, the expansion is

a\ 1 1 loge/u. ^ . 1 ^

- =7^— T~^+ T . + terms m — etc.
G/e 2 4!/jJ^ 4/U,^ fX^

From formulae (790) and (786), the following values can be calculated

:

-;= iV i i 1 2 5 10 00

(~\ = -333 -335 -339 360 406 -432 -491 498 -500

- = 1000 -879 -779 -573 -406 -243 -152 -086 '000.
c

These figures shew that the persistence is always positive but may have

any value whatever, according to the ratio of the masses of the molecules.

386. For laws of force between molecules different from that between

elastic spheres, the persistence of velocity will obviously be different from

what it is for elastic spheres. Clearly, however everything will depend on
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our definition of a collision. If we suppose that a very slight interaction is

sufiicient to constitute a collision, then the mean free path will be very short,

while the persistence will be nearly equal to unity. If, on the other hand,

we require large forces to come into play before calling a meeting of two

molecules a collision, then the free path will be long, but the persistence will

be small, or possibly even negative. In fact, the variations in the persistence

of velocities just balance the arbitrariness of the standard we set up in defining

a collision. This being so, it will be understood that the conception of per-

sistence of velocities is hardly suited for use in cases where a collision is not

a clearly defined event.



CHAPTER XI

VISCOSITY

387. In Chapters VIII and IX we developed a purely mathematical

theory, which was found to lead to an explanation of the phenomena of

viscosity, conduction of heat and diffusion of gases. The theory was mathe-

matically perfect in form, but did not go far towards revealing the physical

mechanism underlying the phenomena.

There is another method of treating these problems, in which we follow

as closely as possible the physical processes which result in the phenomena,

and we now proceed to examine this method. It does not lead to results

possessing the same mathematical exactness as the former method: its

importance lies rather in its disclosure of the physical mechanism at work.

Briefly, the three phenomena under consideration are regarded as transport

phenomena—viscosity is a transport of momentum, conduction of heat is a

transport of energy, and diffusion is a transport of mass. The mechanism of

transport is provided by the free path ; a molecule describing a free path of

length X, is in effect transporting certain amounts of momentum, energy and

mass through a distance X. If the gas were in a steady state each such

transport would be exactly balanced by an equal and opposite transport in

the reverse direction, and the net transport would always be nil. But if the

gas is not in a steady state there will always be an unbalanced residue, and

this will result in the phenomena we wish to study.

General Equations of Viscosity.

388. We shall begin by discussing the motion in a gas in which the

mass-velocity varies from point to point. At the particular point considered,

let us choose our axes so that the mass-velocity is parallel to the axis of x,

while the surfaces of equal velocity are parallel to the plane of xy, so that

in the neighbourhood of the point in question the mass-velocity is a function

of z only.

Let us write fi for mw, the momentum of any single molecule in the

direction of the a;-axis. The mean value of /a at any point will be denoted
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by p,, where of course /Z varies from point to point in the gas. At the

particular point considered we have chosen the direction of our axes so that

the gas is arranged, as regards the distribution of /Z, in a series of layers

parallel to the plane of xy, so that /Z is a function of z only. We proceed to

attempt to calculate the amount of fi which is transported by the molecular

motion across any one of the planes z = constant.

The physical principle underlying the calculation can easily be explained.

To fix our ideas, let us suppose that the average value of /i increases as

z increases, that the planes z = constant are horizontal and that z increases

as we move upwards as in fig. 22. The molecules will cross the planes

^^ = constant in both directions. Those which cross any plane, sixy z = Zq, in

the downward direction will, however, be coming from regions in which the

average value of fi per molecule is greater than it is over the plane z = Zq,

and will therefore, on the average, possess a value of /x in excess of that

appropriate to the plane z = Zq. In the same way, those molecules which

cross this plane in the upward direction will, on the average, possess a value

of yu, smaller than that appropriate to the plane z = z^. Since, however, there

is no mass motion parallel to the axis of z, the number of molecules which

cross the plane z = Zq in one direction is exactly equal to the number which

cross it in the opposite direction. There is, therefore, more momentum caiTied

through the plane z = Zq in the downward direction than in the upward

direction. In other words, there is a downward transport of momentum.

389. As regards any single molecule which meets the plane z = Zn at any

point P, the amount of /* carried across the plane z = Zf) will of course depend,

in actual fact, upon the whole past history of the molecule before reaching

the point P. We are going to conduct our preliminary calculations upon

the supposition that the history of the molecule previous to the last collision

before meeting P, say at Q, is immaterial. This would be justifiable if, on

the average, all past histories previous to the point Q were equally probable.

This, unfortunately, is not so when the molecules are elastic spheres. From

the persistence of velocities investigated in the last chapter, it follows that a

molecule which is known to have arrived at P from Q has probably started

originally from some point further away from P than the point Q. Since,

however, the amount of the persistence depends in general on the particular

molecular structure assumed, it will be simplest to neglect it altogether at

first, and subsequently correct our results for it as far as possible.

390. Consider a molecule meeting the plane z = Zoin P, having previously

come from a collision at Q. Let the velocity components of the molecule be

u, V, w, and let the velocity be regarded as consisting of two parts

:

(i) a velocity u^, of components u^, 0, 0, equal to the mass-velocity of the

gas at P

;
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(ii) a velocity c, of components u — Uq, v, w, the molecular-velocity of the

molecule relatively to the gas at P.

In fig. 22, let QP be the actual path described in the gas before the

molecule arrives at P. Let RP represent the distance travelled by the gas,

Fig. 22.

in the same interval of time, owing to its mass-velocity Wo, 0, 0. Then QR
will represent the path described by the molecule relative to the mass-motion

of the surrounding gas. Let the length QR be denoted by X^, and let this

make an angle 6 with the axis of z.

We are working upon the hypothesis that the expectation of fi for the

molecule in question is that appropriate to the point Q. We shall therefore

take it to be the mean value of fi at the point Q, of which the z coordinate is

Zo — \rGOS0 (791).

Since p,, the mean value of /u., is a function of z only, we can denote the

value of p. over the plane z = ^hy jl (^), and the value of ji at Q will be

Ji (Zo — \r cos 0).

Since Xr is small compared with the scale of variation in p,, this expression

may be written as

fi (zo) — Xy cos 6 .(792).

This is the expectation of /x for any molecule which crosses the plane

z = Zq, having a relative molecular-velocity c inclined at an angle 6 to the

axis of z.

Since all directions of this molecular velocity may be regarded as equally

probable, the probability of 6 lying between 6 and d + dd is proportional to

sin Ode.
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The number of molecules per unit volume which have relative molecular-

velocities for which c and 6 lie within specified small ranges dc, dd may
therefore be taken to be

^vf{c)mi6d6dc,

where of course I /(c) rfc = 1.

The number of molecules having a velocity satisfying these conditions,

which cross a unit area of the plane z — Zq in time dt, is equal to the number

which at any instant occupy a cylinder of base unity in the plane z = z^ and

of height c cos ddt, and is therefore

^vcf{c)co8d^\nddedcdt (793).

Each molecule, on the average, carries with it the amount of momentum
given by expression (792). The total momentum transferred across unit

area of the plane by the molecules now under discussion is therefore

^vcf{c) \jl{z^ — XrCosd i^jy cos sin 6dddcdt,

where X,. denotes the mean value of X^, and is therefore the mean value of the

path QR relative to the moving gas of all molecules which move with a

velocity c relative to the gas. Clearly X^ is the same as the X^ of § 367, and

will therefore be replaced by Xc.

On integrating the expression just found with respect to 0, we shall

obtain the total transfer of momentum by all molecules with velocities

between c and c + dc, whatever their direction. The limits for are to tt,

values of from to ^tt covering molecules which cross the plane from

below, and values of from ^tt to tt those which cross the plane from above.

The result of this integration is

^ vcf (c)\e[^]dodt,

a negative sign indicating that the transfer is from above to below. On
further integrating from c = to c = oo , we obtain for the total transport of

momentum across unit area of the plane in time dt,

iv(^£)j\KAc)dcdt = iv(^£)^. (794),

where cXg denotes the mean value of cXg averaged over all the molecules of

the gas.

In the foregoing argument it might perhaps be thought that X^ ought to

be replaced by ^Xg instead of by Xg. For if QO (fig. 22) is the whole free

path described before collision occurs, there is no reason why PO should be

less than PQ, so that the probable value of PQ might be thought to be ^ X.

The fallacy in this reasoning becomes obvious on considering that in

selecting free paths at random by choosing points on these free paths, the
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longer free paths have a greater chance of being chosen than the shorter

ones, the chance of any path being chosen being in fact exactly proportional

to the length of the path. The average path chosen in this way, accordingly,

will be much longer than that calculated in § 33. To see that Xg is the right

value to assign to X^, we notice that after a molecule has left P, its chances

of collision are exactly the same whether it has just undergone collision at P
or has come undisturbed from Q. Hence PO = \c, and therefore, by a similar

argument, PQ = Xc

A simple example taken from Boltzmann's Vorlesungen* will perhaps

elucidate the point further. In a series of throws with a six-faced die the

average interval between two throws of unity is of course five throws. But

starting from any instant the average number of throws since a unit throw

last occurred will be five, and similarly, working back from any instant, the

average number of throws since a unit throw occurred is also five.

391. We can conveniently suppose that

cX, = cl (795),

where Z is a new quantity, which is of course the mean free path of a

molecule, this mean being taken in a certain way. The way in which the

mean has to be taken is not the same as any of the ways in which it was

taken in the last chapter, so that we do not obtain an accurate resillt, in the

case of elastic spheres, by replacing I by any of the known values of the mean
free path. At the same time the mean values calculated in different ways

will not greatly differ from one another, and as our present calculation is at

best one of approximation, we shall be content for the moment to suppose I

to be identical with the mean free path, however calculated. The extent of

the error involved in this procedure will be examined later.

392. We have shewn that the aggregate transfer of momentum per unit

of time across a unit area of a plane parallel to the plane of xy is

i^^^^ (796).

Across the plane z + dz the similar transfer is

hence the gain of momentum to the layer between the planes z and z + dz is

i^~^f-^.dz (797).

Also if we have a viscous fluid of coefficient of viscosity k moving with

the mass-velocity of the gas, of which the components are u^, 0, 0, the force

• I. p. 72.

J. G. 19
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per unit area of the z plane in the direction of the axis of x, acting upon the

layer of fluid enclosed by the planes z and z + dz, is

^1" (^««>

Similarly that on the plane z + dz, acting in the other direction, is

<t:-'^'^) (^^«)-

The rate of increase of momentum per unit area of the layer between these

two planes must be the resultant of the two forces (798) and (799), and must
therefore be

8^ Mo 7

or, if we replace Wo by its value /Z/m,

m oz^

This will be identical with expression (797) if

K = }vclm (800).

We therefore see that our gas will behave exactly like a viscous fluid, of

which the coefficient of viscosity is given by equation (800). If we replace

07W by p, this takes the simple form

K = ^pcl (801).

393. From the results of our analysis we can now obtain an insight into

the molecular mechanics of viscosity in the case of a gas. Let us imagine

two molecules, with velocities u, v, w and — u, v, w, penetrating from a layer

at which the mass-velocity is 0, 0, to one at which it is u^, 0, 0. By the

time the molecules have reached this second layer we must suppose that

their velocities are divided into two parts, namely,

u — Uq, V, w and Mq, 0,

for the first, and
— u — Uo, V, w and Uq, 0,

for the second. The first part in each case will represent molecular-motion,

and the second part will represent mass-motion. Now in equation (32), we

saw that the total energy of the gas could be regarded as the sum of the

energies of the molecular and mass-motions. The sum of the energies of the

molecular-motions of the two molecules now under discussion is, however,

\m [(w - «o)' -¥ V + w'''\ + ^m[{- u - u^f -t-
1;^

-f- w*]

,

which can be written

m {u^ + v^ + w^) + ??^Wo^
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The first term is equal to the energy of the molecular-motion of the two

molecules at the start ; the second term represents an increase which must

be regarded as gained at the expense of the mass-motion of the gas. Thus

the phenomenon of viscosity in gases consists essentially in the degradation of

the energy of mass-motion into energy of molecular-motion ; and is therefore

accompanied by a rise of temperature in the gas.

Corrections when Molecules are assumed to he Elastic Spheres.

394. From want of definite knowledge of the molecular structure two

errors have been introduced into our calculations. In the first place we

have neglected the persistence of velocities after collision, and in the second

place we have ignored the difference between two different ways of estimating

the mean free path. If the molecules are assumed to be elastic spheres,

it is possible to estimate the amount of error introduced by both these

simplifications.

We may begin by an exact calculation of cXci to replace the assumption

of equation (795). The quantity required is

^=f f{c)\ccdc (802),
.'o

where \c is the same as the Xc of § 368. Substituting the value given for \c

by equation (753), and putting

'7rv(T^yjr{c\/hm) tt '^hm v cr^ . o "^(x)

and if I is defined by equation (795), we have

cXg = cl -

so that in formula (801) we must take

I = cXf \ 2hm = -j= — — .

\/27^I/a^'o yfr(a;)

The integral has to be evaluated by quadrature. Tables for its evaluation

are given by Tait*. The integral has also been evaluated by Boltzmannf,

whose result agrees to three significant figures with that obtained by Tait.

Using this value for the integral, it is found that

/ = 1-051 -^=J— (803).
V27ri/o-2

* Collected Works, ii. pp. 152 and 178.

t Wiener Sitzungsher. lxxxiv. p. 45 (1881).

19—2
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The value of I, calculated accurately for our present purpose, accordingly

differs by about 5 per cent, from Maxwell's mean free path calculated

in § 33.

395. We turn now to the error which has been introduced by ignoring

the persistence of velocities. We have found that this persistence is measured,

in a gas of which the molecules are elastic spheres, by a numerical factor

which is always intermediate between | and ^, and of which the mean value,

averaged over all collisions, is "406.

If, on the average, each particle has described a path of which the

projection on the axis of z is ^, with a velocity of which the component

parallel to the direction of the axis of z is w, then, on tracing back the

motion, we know that as regards the previous path of each molecule the

expectation of average velocity parallel to the axis of z is 6w, where 6

measures the persistence, and therefore, on the average, the expectation of

the projection of this path on the axis of z may be taken to be 61^. Similarly,

the expectation of the projection of each of the paths previous to these may

be taken to be d^i^, and so on.

It follows that if we trace the motion a sufficient distance back, each

molecule must be supposed to have come, not from a distance ^ measured

along the axis of z, but from a distance

^4-^^ +^+...=^ (804).

We must not, however, assume that each molecule on arriving at the

plane z = Zq has, on the average, a value of fi appropriate to the plane

z = Zq — ^ . For the molecule has not travelled a distance zi ^ undis-
1 — tf 1 — u

turbed, and at each collision a certain amount of its excess of momentum
will have been shared with the colliding molecule. Of the various simple

assumptions possible, the most obvious one to make is that at each collision,

the excess of momentum above that appropriate to the point at which the

collision takes place is halved, half going to the colliding molecule and half

remaining with the original molecule. Making this assumption, it is clear

that the excess of momentum to be expected is not that due to having

travelled undisturbed a distance equal to that given by expression (804), but

a distance

?+K^^+i(^^r+Hn+...))) = i^P (805).

Taking ^= -406, this becomes 1255^.

It follows that the persistence of velocities, when the molecules are elastic

spheres, can roughly be allowed for by supposing the free path in the viscosity

formula to be the mean free path multiplied by a factor 1*255. Combining
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this with expression (803), we find that the free path in the viscosity formula

must be taken to be
1-317

; =
vlTrva"

A better approximation can be obtained by inserting the factor 1/1 — \6
in the integrand of § 394 before integration, the value of 6 being obtained

from the table on p. 279. As the result of a rough integration by quadratures,

I find

^'^^^
(806).

Hence for a gas, in which the molecules are elastic spheres, the viscosity

coefficient (equation (801)) is given by

«=ipc; = -461^.^^ (807).

396. This formula, although undoubtedly better than formula (801), is

still only an approximation, and the error introduced by the rough assump-

tions made may be very considerable. It would doubtless be possible to

improve on the rough assumptions made in § 395, and obtain results still

closer to the truth.

This, however, seems unnecessary, since accurate numerical results are

obtainable by the mathematical methods of Chapters VIII and IX.

Chapman*, following Maxwell's method, arrives at the formula

Stt mc .^^ mc /oao\K = i^ -7=— = -491
-Y-^
— (808).

This, as already explained f, can still only be regarded as an approxima-

tion, since the function ^ is assumed to be limited to terms of the third degree.

In a later paperJ, Chapman has examined the error of this approximation by

taking successive further approximations, and finds that the successive

further approximations in turn require that the numerical factor '491 should

be multiplied by 1-01485, 1-01588, 101606. These numbers are clearly

converging rapidly to a number which, to three places of decimals, may be

taken to be 1-016, and we may therefore suppose that the true value of k is

1*016 times that given by equation (808), or

/c = '499-7^^ (809).

* Phil. Trans. 211 A (1911), p. 433.

t See footnote, p. 237.

% Royal Society, Nov. 18, 1915.
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Comparison with Experiment.

Determination of Size of Molecules.

397. Since the value of k can be determined experimentally, it is clear

that, upon the supposition that the molecules may be regarded as elastic

spheres, equation (809) will give valuable information as to the magnitude

of <T. The agreement or disagreement of the value of a obtained in this

way with that obtained in other ways, can be regarded as evidence as to the

tenability, or the reverse, of the hypotheses on which we have been working.

In the table opposite are given the coefficients of viscosity of various

gases, and the calculated values of ^cr, the radius, obtained by taking

1/ = 2-75 X 1019 -^ Chapman's formula (809).

The agreement of the values of ^^or given in the last column, with those

already calculated from the deviations from Boyle's law (p. 152), is seen to be

tolerably good ; a reason why it is not still better will be discovered almost

immediately (§ 402).

Variation of k with Density.

398. Equation (807) shews that theoretically k is independent of the

density of the gas, when the molecules are assumed to be elastic spheres.

Indeed, whatever structure we assume for the molecules of the gas, it is

clear that I will, to a first approximation, vary inversely as the number of

molecules per unit volume of the gas. Hence equation (801) gives a value

of K which is independent of v, and we obtain Maxwell's law

:

The coefficient of viscosity of a gas is independent of its density.

In spite of its apparent improbability, this law was predicted by Maxwell

on purely theoretical grounds, and its subsequent experimental confirmation

has constituted one of the most striking triumphs of the Kinetic Theory.

Some of the physical consequences of this law are interesting, and

occasionally surprising. For instance, according to the well-known law of

Stokes, the final steady velocity of a sphere falling through a viscous fluid is

given by

QiraK

where a, M are the radius and mass of the sphere, and M^ the mass of fluid

displaced. Since k is, by Maxwell's law, independent of the density, it follows

that, within the limits within which Stokes's law is true, the final velocity of

a sphere falling through air or any other gas will be independent of the

density of the gas, or more strictly will depend on the density of the gas

only through the term M — Mq, which will differ only inappreciably from M.
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Gas

Hydrogen

Helium

Water vapour

Carbon-monoxide.

.

Ethylene

Nitrogen

Air

Nitric oxide
Oxygen

Argon

Carbon-dioxide ...

Nitrous oxide

Methyl chloride ...

Ethyl chloride

Chlorine
Benzene

Krypton
Xenon

H2

He

H2O

CO

C2H4

N2

NO
O2

CO2

N2O
CH3CI
C2H5CI

CI2

CoHe

Kr
Xe

Molec.
Weight

4

18

28

28

28

30
32

40

44

44
50
64

71

78

83
130

)c observed I A.,tv,«,;f„» Assumed /c

(0°C.)
Authority ^qoc.)

•0000864
•0000857

•0000870
•0000878
•0001891

•0001887

•0000904
•000092
•0001628

•000162
•000163

•0000961

•000099

•0001647
•000166

•0001674

•0001714
•0001725

•0001733
•0001794
•0001873
•000189
•0001926
•000210

•000208
•000211

•0001431
•0001388

•0001381

•0000988

•0000935
•000094
•0001287

•0000700
•000069

•000246t
•000222t

1

2

3

13
4
8

3
5

1

6

7

2

6
1

6
8
1

9
2

14
1

6
8

4
10
8
1

2

1

2

7

6
7

9
11

12
12

•0000867

•000189

•0000904

•000163

•0000961

•000166

•000172

•000179
•000189

•000210

•000142

000138
000099
000094

000129
000070

000238
000214

Calculated values
of ^<T in cms,

134xl0-8

1-08x10-8

£•27 X 10-8

1-89x10-8

2^76xlO-8

1^88xl0-8

[V86xlO-8]

1-86x10-8
1-81x10-8

1^82x10-8

2^27 X 10-8

230x10-8
2^81x10-8
3^06 X 10-8

2^68 X 10-8

3^72x10-8

2^05x10-8
2^42 X 10-8

t Values at 15° C.

Authorities :

1. Mean value given in Landolt and Bornstein's Tables.

2. Breitenbach {Wied. Ann. lxvii. (1899), p. 803 ; Ann. d. Phys. v, (1901), p. 166).

Pnluj (Wiener Sitzungsber. 1878).

Schultze (Ann. d. Phys. 1901).

Kundt and Warburg (Pogg. Ann.
to 0° C.

Obermayer {Wiener Sitzungsber.

1875). Observations at 15° C. corrected conjecturally

9.

10.

11.

12.

13.

14.

1875, 6). The values are those deduced from the

transpiration experiments of Obermayer by Weinstein, Thermodynamik und Kinetik

der Korper, i. p. 332.

Graham (Phil. Trans. Roy. Soc. 1846, 8). The values given are those deduced from the

transpiration experiments of Graham, by the Recueil de Constantes Physiques.

K. Schmitt (Ann. d. Phys. xxx. p. 398). This paper contains a r^sum^ of results obtained

in recent years at Halle, by the pupils of Prof. Dorn.
Mean value assumed in the Recueil de Constantes Physiques.
Lord Rayleigh (Proc. Roy. Soc. lix. p. 108).

Schumann (1884).

Bankine (1910). The values in the first column are those observed at 15° C. ; those in

the second column are the same values conjecturally corrected to 0° C.

F. Kleint, Verhand. d. Deutsch. Phtjs. Gesell. vii. (1905), p. 154.

Vogel (Halle) quoted by Eucken, Phys. Zeits. xiv. (1913), p. 324.
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Roughly, then, a small sphere will fall as rapidly through a dense gas as

through a rare gas. Again the air-resistance experienced by a pendulum

ought to be independent of the density of the air, so that the oscillations of

a pendulum ought to die away as rapidly in a rare gas as in a dense gas, as

was found to be the case by Boyle in 1660*.

At the same time it ought to be mentioned that Maxwell's law is by no

means completely confirmed by experiment. Meyerf gives a detailed and full

account of a variety of experiments which have been designed and performed

in order to test this law. He comes to the conclusion that the divergences

from the law found by experiment are not sufficiently great to invalidate the

law within the limits of pressure from 1 to ^ atmosphere.

The most interesting example of such experiments is perhaps found in a

set by Maxwell himself
J.

He suspended three parallel and coaxal circular

discs horizontally on a common axis by a torsion thread in such a way that

they could oscillate beween four parallel fixed discs. If the law in question

were true, the oscillations ought, as in Boyle's pendulum experiment, to die

away at the same rate whether the air were dense or rare, or at least ought

only to vary by a small difference of the nature of that found above in

discussing Stokes's law. The following table shews the values of the

logarithmic decrement found experimentally by Maxwell, and also the values

calculated by him on the assumption of constancy of the coefficient of

viscosity

:

Pressure
(inches of

mercury)

Logarithmic decrement

Observed Calculated

0-54

5-68

20-09

29-29

01.57

0-156

0-152

0-153

0-156

0-156

0-153

0-154

At considerably higher pressures. Maxwell's law fails altogether for certain

gases. For instance, the following table gives the viscosity of carbon-dioxide

at high pressures! ^^^ ^^ ^ temperature of 32'6° C.

* Thomson and Poynting, Properties of Matter, p. 218.

t Kinetic Theory of Gases, p. 181.

+ Phil. Trans. 156 (1866), p. 249.

§ Experiments by Warburg and v. Babo {Wied. Ann. xvii. (1882), p. 390, and Berlin.

Sitzungsber. (1882), p. 509) The numbers here given are those of Warburg after correction by

Brillouin {Le(pns sur la viscosite desfluides, 1907).
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Pressure
(atmospheres)

Density K

60-3 0-170 0-000189

69-9 0-240 0-000214

74-6 0-310 0-000241

76-6 0-380 0-000273

77-2 0-450 0-000315

77-6 0-520 0-000367

78-2 0-590 0-000426

80-7 0-660 0-000496

88-5 0-730 0-000575

107-3 0-800 0-000678

At the other limit of excessively small pressure, a remarkable departure

from Maxwell's law may also occur, owing to the free path becoming com-

parable with, or even greater than, the dimensions of the vessel in which the

experiment is conducted. If the molecule has not room to describe a free

path equal to the theoretical free path assumed in § 390, the resulting

formula obtained for the viscosity must obviously fail. If I cannot, from the

arrangement of the apparatus, be greater than some value Iq, then k (cf.

equation (801)) cannot be greater than ^pclo, and so ought to vanish with p.

This is found to be the case. Sir W. Crookes* has measured the viscosities

of gases at pressures of only a few thousandths of a millimetre of mercury,

and obtains values which are much smaller than those at higher pressures,

and tend to vanish altogether as the density of the gas vanishes.

Variation of k with Temperature.

399. Since c is proportional to the square root of the absolute temperature,

it appears from formula (807) that if the molecules were true elastic spheres,

the value of k would be proportional to the square root of the temperature.

As a matter of fact, it is found that k varies a good deal more rapidly than

this, as the temperature increases. The divergence between experiment and

the theoretical value obtained on the assumption that the molecules are elastic

spheres is, however, one that could have been predicted. This assumption is,

at best, only an approximation, and we must continually examine what devia-

tions are to be expected from the results to which it leads.

The peculiarity of a system of elastic spheres is that the motion remains

geometrically the same if the velocity of each sphere is increased in the same

ratio. Thus in order to determine the motion of two spheres after collision

* Phil. Trans. 172, p. 387.
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it is only necessary to know the directions of motion before collision, and the

ratio of their velocities ; we are not concerned with the actual values of these

velocities. When, on the other hand, we suppose the molecules to be sur-

rounded by fields of force, this ceases to be true : the paths after collision do

not depend solely on the ratio of the velocities, but on the absolute magnitudes

of these velocities. For instance, in fig. 23 let OPQR, O'P'Q'R' be the paths
' described when two molecules surrounded by fields of force meet one another.

Fig. 23.

the figure being drawn, for the sake of simplicity, for the case in which the

two velocities are equal and opposite. If now we suppose the molecules

moving along the same lines before encounter, but each with double its

former velocity, the paths will be different. For obviously the higher velocity

will carry each molecule further into the other's field of force before the

centres of the two molecules reach their shortest distance apart, so that

the path described, instead of being OPQR, will be, let us say, OPST.
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We can, however, by an obvious geometrical construction find the size

of two spheres Which would describe paths having the same deflections as

OPQR or OPST. If we perform the construction for the two paths of

fig. 23 we find that the size of the sphere for the former path described

with small velocity is greater than for the latter path described with large

velocity. If, then, we attempt to represent our molecules by spheres, the

size of these spheres must be supposed to decrease as the mean molecular

velocity increases, and therefore as the temperature rises.

400. Thus in formula (807), k must be supposed to depend on the

temperature both through the factor c in the numerator, and also through

the factor cr^ in the denominator. The value of k will accordingly not vary

as the square root of the temperature, but will vary with the temperature

more rapidly than this.

In Meyer's Kinetic Theory of Gases*, there will be found a full account of

experiments to test the variation of k with temperature. The following table

gives the variation of k with temperature found by Schultzef for the gases

helium and argon, together with the values of ^a-I have calculated from them

by use of formula (809).

Gas Temperature K (observed) ^a- (calculated)

Helium 15-3° C. •0001969 1-073x10-8

» 99-6° C. •0002348 1-0.35x10-8

» 184-6° C. •0002699 1-014x10-8

Argon 14-7° C. •0002208 1-80 xlO-8

» 99-7° C. •0002733 1-73 xlO-8

" 183-7° C. •0003224 1-67 xlO-8

401. A table expressing the variation of a with the temperature will

give some information, although slight, as to the field of force surrounding

the molecules. For the calculated value of a- is, roughly speaking, the

average distance of closest approach of the centres of two molecules in

collision, so that the mutual potential energy of two molecules at a distance

a- is, on the average, equal to the kinetic energy of the velocities along the

line of centres before collision.

As in formula (316), the average value of F^ the square of the relative

velocity before collision, is |C^ Thus the square of the velocity of each

molecule relatively to the centre of gravity of the two colliding molecules

* § 85, English translation, p. 215 et seq.

t Ann. d. Phys. vi. (1901), p. 302 for helium, and v. (1901), p. 140 for argon.
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will be, on the average, fCl The probability that the direction of this

velocity makes an angle with the line of centres, which lies between 6 and

6 + dO, is 2 sin 9 cos Odd, so that the average square of the relative velocitj^

along the line of centres Fcos 6 is

f C^ f

"

' 2 sin 6 cos^ OdO = ^C\
J

The kinetic energy which has been destroyed bj'- the intermolecular field of

force when the molecules are, on the average, at their point of closest approach

at distance <t apart is therefore ^mC^ or RT.

Thus we may say that the mutual potential energy of two molecules at a

distance a apart will be RT, where T is the temperature corresponding to the

value of a in question. The force of repulsion between two molecules at a

distance o- is accordingly

„ dT „ Ida-

-^da'^-^/'dT'

the latter form being appropriate when a- is regarded as a function of T.

For instance if the law of force is fir~^, we must have

giving on integration
1

f^ "'
(810).

RT(s-l)

In this argument a has been taken to be the distance of closest approach

of two molecules at an encounter, and when the orbits are at all curved, this

is not quite the same thing as the diameter of the equivalent sphere obtained

by a construction such as that of fig. 23. Thus equation (810) will give a

value of a which will be in error by a numerical multiplier. This multiplier

will of course vary for different values of s. It will reduce to unity for elastic

spheres, and will differ most from this for the smallest values of s.

402. It will be remembered that in § 186 we found that molecules with

a law of force yu,r~* could be regarded as elastic spheres for the purpose of

calculating the pressure, if a were supposed given by

1

Lier(-i)f Vi^(i-r--i) <«")•

which agrees with (810) except for the numerical factor. We see that

molecules which are really point centres of force may be treated as elastic

spheres, both as regards pressure and viscosity, but the spheres must be of

different sizes in the two cases.
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When s is nearly infinite

—

i.e. when the molecules are very hard—formulae

(810) and (811) become identical, but for smaller values of s, the divergence

between them becomes very considerable. The lowest value for s which can

be supposed to occur for any gas is probably about s = 5 (cf § 404, below), and

when 5 = 5,

V ^ (^ - .-^) = \7^(i)
= i-^^«3 («i2).

Thus for such a gas as carbon-dioxide, for which s — 5'2, we may expect

a difference of as much as 50 per cent, between the values of cr calculated

from viscosity and Boyle's law.

In such a case as this, however, the calculation from Boyle's law fails

because h, which from equation (377) ought to vary as T~^, is supposed, in

evaluating h experimentally, to remain independent of the temperature.

We shall return to a further consideration of these questions below

(§ 452).

403. Whatever the value of the numerical multiplier may be, it appears

1 .
-^

that — will vary as T*~i, and therefore that k will vary as T", where

^ =*+^ (813).

It is of interest to notice, as was first pointed out by Lord Rayleigh*,

that this result could have been obtained purely from a consideration of

physical dimensions, without any exact analysis or detailed study of the

mechanism of viscosity.

For K, the coefficient of viscosity, can only depend on the following

quantities : m. and C which measure the mass and mean velocity of the

molecules, yu. which measures the distance at which their action on one

another reaches a certain intensity (replacing the " size " of the molecules,

which has now become meaningless), and v the number of molecules per

cubic centimetre. It is clear, as in § 398, that k must be independent of v,

so that K must be expressible as a function of w, G and /u,.

The physical dimensions of «, m, G and /* are as follows

:

K is of dimensions ML~^T~^,

m „ „ M,

G „ „ LT-\

^ „ „ MLo+^T-

Hence we must have that k is proportional to

1

this being the only way of combining m, G and
fj,

so as to get a quantity

* Proc. Roy. Soc. lxvi. p. 68.
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of the same physical dimensions as k. If k is observed to vary as the

nth. power of the absolute temperature, and therefore as the 2wth power of

C, we have the relation

^"^^
(814),2w = s^l

which is the same relation as is given by equation (813).

404. For a great number of substances, it is found as a matter of

experiment that k varies approximately as a power of T, being represented

with very tolerable accuracy by the formula

T N'*

2m) («i^>-

where Kq is of course the coefficient of viscosity at 0" C.

The molecules of such substances may be regarded as point centres of

force, repelling according to the law fx,lr^, where s is given by equation (814).

The following table gives the values of n observed for various substances,

together with the values of s calculated from relation (814). An instance of

the closeness of agreement between formula (815) and observation will be

found below (§ 407).

Values of n and s.

Gas Authority*
Value of n
(observed)

Value of s

(calculated)

Hydrogen

Helium

Nitrogen

Carbon-monoxide ...

Air

Oxygen

Argon

Nitrous oxide

1

4

1

2
3

4

4

1

1

4

1

2

4

4

•681

•70

•681

•6852

•647

•74

•74

•754

•782

•80

•815

•8227

•93

•98

12^05

11^0

12^05

11-80

14-6

9^3

93

8^87

8^09

7-7

7-36

7^19

5^6

5^2Carbon-dioxide

* Authorities

:

1. Lord Rayleigh, Proc. Roy. Soc. lxvi. p. 68, and Collected Scientific Papem, iv. pp. 452

and 481.

2. Schultze, Ann. d. Phyg. v. p. 163, and vi. p. 310.

3. Kamerlingh Onnes and Sophus Weber, Communications from the Leiden Phys. Laboratory,

134 b, p. 18.

4. von Obermayer, Wiener Sitzungsber. lxxiii. (2), p. 433.
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405. Sutherland's Formula. The supposition that the molecular force

falls off as an inverse power of the distance leads to formula (810) which

requires a to vanish absolutely at high temperatures. It seems more

probable that a molecule possesses a hard kernel which is not penetrated by

other molecules no matter how violent the collision between them may be.

Sutherland's formula* is based upon certain physical assumptions which

amount to assuming that the effective value of o- at temperature T is

C
<7^ = (7l(l + ^) (816),

where C, a^ are constants, <r^ being the value of a when T=oo , and there-

fore being the diameter of the hard kernel of the molecule, while C is the

temperature at which a^ = 2o-o^.

If I is the free path at temperature T and Iq its value at 0° C, we must have

C
I <r\^o_ '^273-1

lo <T^ . . C
1 +

which is Sutherland's formula for the free path.

follows that ri

, 1 -I zL

cl [ T\
•1/

From this it at once

K

/Co

2731

{cl)e=o \273-
1 +

or
T \^C+27S-l

"-^273-1; G+T
and this is Sutherland's formula for the viscosity at temperature T,

406. For many gases this formula meets with very considerable success

in measuring the variation of viscosity with temperature. As an illustration

may be given the following tables, taken from a paper by Breitenbachf, in

which the observed and calculated values of the viscosity are compared.

Ethylene

(*fo
= -00009613, C = 225-9)

Carbon-dioxide

{(Co= -00013879, = 239-7)

Temperature K (observed) K (calculated)

-21-2° C. •0000891 •0000890

150 1006 1012

99-3 1278 1278

182-4 1530 1519

3020 1826 1833

Temperature K (observed)

1

K (calculated)

-20^7°C. -0001294 •0001284

15^0 1457 1462

99^1 1861 1857

182-4 2221 2216

302-0 2682 2686

PhiU Mag. [5], xxxvi. (1893), p. 507. t Ann. d. Phy$. vi. p. 168.
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the values for G found by different observers

:

= 80-3 (Schultze), 78-2 (Schmitt).

= 169-9 (Schultze), 174-6 (Schmitt).

= 142 (Rankine).

= 252 (Rankine).

= 72-2 (Rayleigh), 71'7 (Breitenbach), 79 (Sutherland),

83 (Schmitt).

= 110-6 (Bestelmeyer), 113 (Schmitt).

= 100 (Sutherland).

= 111-3 (Rayleigh), 119-4 (Breitenbach), 113 (Sutherland).

= 195 (Sutherland).

= 127 (Sutherland), 138 (Schmitt).

= 199 (Sutherland).

= 260 (Sutherland).

= 239-7 (Breitenbach), 277 (Sutherland).

= 225-9 (Breitenbach), 272 (Sutherland).

= 454 (Breitenbach).

407. On the other hand Kamerlingh Onnes* finds very definitely that

the viscosity of helium at low temperatures cannot be represented by

Sutherland's formula with anything like the accuracy given by the simpler

formula (815). This is shewn in the following table : the first column gives

Viscosity of Helium.

The following are

Helium G
Argon G
Krypton G
Xenon G
Hydrogen G

Nitrogen G
Carbon-monoxide G
Air G
Nitric oxide G
Oxygen G.

Chlorine G:

Nitrous oxide G-.

Carbon-dioxide G-.

Ethylene G-.

Methyl chloride G-

Temperature K (observed)
"^ \27Bl)

K (calculated,

Sutherland)

183-7° C. •0002681 •0002632 -0002682

99-8 2337 2309 2345

18-7 1980 1970 1979

17-6 1967 1965 1974

-22-8 1788 1783 1771

-60-9 1587 1603 1563

-70-0 1564 1558 1513

-78-5 1506 1515t 1460

-102-6 1392 1389 1317

-183-3 09186 09185 0745

-197-6 08176 08213 0628

- 198-4 08132 08155 0621

- 2530 03498 03489 0135

-258-1 02946 02887 0092

* Kamerlingh Onnes and Sophus Weber, Covimunicatiom from the Leiden Phys. Laboratory,

134 h, p. 18.

t This entry, which was obviously wrong in the original table, has been recalculated.
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the values of k observed for helium, the second column gives the values

calculated from formula (815) on taking «:o
= -0001887, w = -647, while the

third column gives values of k calculated by Sutherland's formula, taking

0=78-2.

General Formula for the Coefficient of Viscosity.

Law of Force /ir~*.

408. Molecules attracting according to the law /Ar~* may be treated

as elastic spheres having an effective diameter given, except for a multi-

plying constant, by equation (810), and on substituting this value for <t

into equation (801) or (809) we see that the coefficient of viscosity must be

given by an equation of the form
2

RT{s-Vj
'

(817),K = A \/mRT

where J. is a numerical constant.

Chapman*, using the method already explained in § 396, has determined

the value of this constant. To a first approximation he finds for the value

of ^,

^ = '/"
o . -.-(818),

8/,(s)r 4
s-1,

where I^if^) is the number defined by equation (616). With this value for A,

equation (817) reduces to Maxwell's exact formula (715) when s = 5, and to

Chapman's approximate formula (808) when s = oo .

In his second paper, Chapman carries the calculations to a second

approximation, and finds that the value of A must be multiplied by a factor

which increases continuously from unity when s = 5 to 1*01485 when s = oo
,

this last number of course agreeing with that already given in § 396. This

indicates that the error in using approximation (818) for A is never more

than about 1^ per cent., and as this is smaller than experimental errors of

observation, it is not worth carrying the approximation further.

* See footnote on p. 237.

J. o. • 20



CHAPTER XII

conduction of heat

Elementary Theory.

409. An elementary theory of conduction can be arrived at in the same

way as the elementary theory of viscosity, given at the beginning of the last

chapter.

Let the gas be supposed arranged in layers of equal temperature parallel

to the plane of xy. Let E denote the mean energy of a molecule at any point

in the gas, so that E will be a function of z.

Let us fix our attention on the molecules which cross a unit area of the

plane z = Zq. Some molecules will cross this unit area after having come

a distance I from their last collision in a direction making an angle 6 with

the axis of z. The last collision of these molecules must accordingly have

taken place in the plane

z = Z(i — l cos 6.

We may suppose that the mean energy of these molecules is that appro-

priate to this plane, and this may be taken to be (c£ formula (792))

E-lcosd^ (819),

where E is evaluated at z = Za.

The number of molecules which cross the unit area in question in a

direction making an angle between 6 and 6 + d6 with the axis of z per unit

time is (cf formula (793))

^t^c cos 6 sin Odd,

and if we assume that each of these has an average amount of energy given

by formula (819), the total flow of energy across the unit area of the plane

will be

E-l cos ^1^') ^vc cos sin ddd=-^vcl^ (820).

If E had been independent of z, this flow of energy would of course have

been nil, for as much would have crossed the plane in one direction as in the

/:
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other. But if E increases with z the molecules which cross the plane in the

direction of z decreasing, since they come from regions in which z is greater,

carry more energy than those crossing the plane in the reverse direction, and

so there is a resulting flow of energy in the direction of z decreasing.

If ^ is the coefficient of conduction of heat, the flow of heat across unit area

of the plane z = z^Wl the direction of z increasing is — ^^ , so that the flow

of energy is — J^ -^ , where / is the mechanical equivalent of heat.

Equating this to expression (820),

'^^d-z=^'"^Tz'^^'"^dTYz'

from which it follows that the value of ^ is

IvcldE ' .

^=S-JdT ^^^^^'

From equation (505) we have the relation

^»=iii («22),

:

where 0^ is the specific heat at constant volume, and again, from equation

(800), if K is the coefficient of viscosity,

K = ^vclm (823).

Using these relations, equation (821) becomes

'^ = KCy (824).

- Meyer's Theory.

Correction when Molecules are Elastic Spheres.

410. We found that the first formula obtained for the coefficient of

viscosity was true as regards order of magnitude, but required correction by

multiplication by a numerical factor substantially different from unity. So

also here, we shall find that strict analysis leads to a value of ^ which differs

very appreciably from that given by equation (824), although again the only

difference will lie in the occurrence of a numerical multiplier. We proceed

to apply analysis, as rigorously as possible, to the case of conduction of heat in

a gas of which the molecules are elastic spheres. The solution which follows

is substantially that given in Meyer's Kinetic Theory of Gases. The main

difference arises out of the fact that Meyer neglects certain terms expressing

the variation of collision-frequency, although these terms are of the same

order of magnitude as terms retained, while I have found it possible to

give the more complete investigation in which these terms are taken into

account.

20—2
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We consider any element dxdy of the plane z = z^, and with the centre

of this element as origin, we take spherical

polar coordinates r, 6, </>, the line ^ =
being parallel to the axis of z.

The curvilinear element of volume for

which r, 6,
<f>

lie between r and r + dr,

6 and 6 + dd, ^ and
(f>
+ d<p is the volume

dv = r^ sin dddd<l>dr.

We begin by considering the possibility

of a molecule undergoing collision in the

element dv, leaving it with a velocity c in

such a direction as to pass through the

small area dxdy, and describing a free path

which reaches at least as far as the element dxdy without collision.

Since the whole motion is reversible, the number of collisions in which

one of the molecules has a velocity between c and c + dc after collision in

the element dv is exactly equal to that of the collisions in which one of the

molecules has a velocity within these limits before collision.

The number of molecules which at any instant are moving with a velocity

between c and c-\- dc in the element dv is

vr'sineded<f>dr(^J 4^7rc'e-^'"''dc (825),

so that the number of collisions experienced by these molecules in time dt is,

by § 366, equal to

®dt X (expression (825)) (826),

Wirva"
where © =

hmc
ylr(c^/hm) (827).

This, then, is the number of molecules which, in time dt, experience a

collision in the element dv, and leave it with a velocity between c and c + dc.

All directions are equally likely. The element dxdy subtends a solid angle

, , cos 6

at the element dv, so that the chance that, if a molecule escapes collision, it

will pass through the element dxdy, is

cos 6
dxdy

4i7rr^
.(828).

Multiplying expressions (826) and (828) together, we obtain for the

number of molecules which leave the element dv in time dt with a velocity
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between limits c and c + dc, in a direction suitable for passing through the

element of area dxdy,

vdxdy dt Bind COS eded<f>dr{^ ec'e-^'^^'dc (829).

In this expression the quantities 0, h, r are to be evaluated in the

element dv, and therefore for the value z = Zq — 't' cos 0. We may accordingly

put

and give similar values of h, r. The expression then becomes

vdxdydt sin 6 cos 0ddd<f>dr f—Y© (fe~ ^"""^ dc

r cos 6 dv 3 r cos 6 dh r cos 6 d® „ ^ dh~\ .oor»\
1 J-- o —r

—

-j p:r— ^r-H-mc^r cos (9 ;t- ...(830),
V dz 2 h dz S dz dz]

in which all quantities are evaluated for the plane z = Zq.

411. We have next to calculate the probability of a molecule describing

the free path r from dv to dxdy without collision.

We cannot use the analysis of § 371 to determine this probability, for in

the present problem the state of the gas varies from point to point as we
proceed along the path of the molecule. If, however, we denote by f{l)

the fraction of the whole which travel a distance at least equal to I without

collision, we obtain, just as in § 371, the differential equation

m^_m^_fM^
; (831),

do \c.. c

in which @ is now evaluated at a point at distance I along the path. The
solution of this equation is

. edi
f(l) = e «yo ;..(832).

If the path is small compared with the scale of variation of conditions in the

gas, we may to a sufficient approximation write the value of © at a distance I

along the path in the form

a©
di'

® = ®l=0 + ^

a©
di

'

so that I @dl = l@i^Q + ^l'
Jo

and the right-hand side is equal to I times the value of © at a distance ^^

along the path, at which the value of ^r is 5 — ^r cos 0. Thus

r0di = «(0„,.-Jrcos4f).
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giving on substitution into equation (832),

412. By multiplication of this expression and (830) we find, as the

number of particles which cross the plane z = Zq per unit area per unit time

with velocities between c and c + dc, having started from the element dv,

dn = i^ sin 6* cos eded<f> (—Y © c'e'^"^'' €-''^^''{1 - Fr cos e)dcdr

(833),

, ^ Idv Zldh ld% dh r dS
where -P=-j-+orj~+^-i '^c^ 3 ?r -y-

>

V dz 2 h dz & dz dz 2c dz

and all quantities are evaluated in the plane z = Zo.

We next integrate this expression with respect to and
(f>

so as to obtain

the total number of molecules which cross the plane z = Zo from the side z<Zo
with velocities between c and c + dc, coming from a distance intermediate

between r and r + dr. In this integration, the limits for
(f)

are from to 27r,

those for 6 are from to | tt only. With these limits of integration,

j
j
sin ^ cos eded(}) = tt,

j
j
sin ^ cos^ dddd^ = |7r.

Thus if we denote the number in question by drir^c, "we have

drir c = X X dn

'.::(i,.e„-.-.-.a-..,...

We can now sum this number over all values of r, the limits being r =
to r = 00 . The number so obtained, say drig, will be the total number of

molecules crossing unit area of the plane z = z^ in the direction of z

increasing.

d@ I r i'^\ d@
The quantity Fr depends on -v- through the terms

( cj
— «- ) -j- , and on

multiplying by e~'^^'^ and integrating, these terms destroy one another.

Omitting terms in -j—, F becomes independent of r, and we have

f e-'^l'@dr = c, I Fre-'^i'%dr = -^^-,

so that we finally obtain

dn,= 27rv{^^fe-^^'^\^dc
c c^ dp c" dh mc* dh'

2''S^d2~2mdz'^mdz
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Using the value for c/0 given by equation (753), we find that this equation

can be expressed in the form

rf«
_-..7^^A'.-w(tim

r^i^r (c "Jkm) 13^ ^^ 2A dz 3
Q-'hmc'f^dc.

413. This expression gives the flow, in the direction of z increasing,

of molecules having velocities intermediate between c and c + dc. The
corresponding flow in the opposite direction, say cZw/. will be given by an

expression which will be exactly similar except that the signs of all the

differential coefficients with respect to z must be changed. Thus Swc, the

excess flow in the direction of z increasing, of molecules with velocities

intermediate between c and c + dc, will be given by

hrtc = dn. — dnJ

2^/h' 2 dv 1,, „, „, c?A'

'rra''y}r{c\/hm)l^vdz h^ ^ ' dz

Writing x for c VAm, this becomes

e-hmc\,^c^

Bne= 7=—

—

37ra^ whm yfr (x) [^^Mf.--M («^*>-

and the total flow of molecules of all velocities is found by integrating this

expression from c = to c = oo .

414. Heat can, as we know, be transferred either by conduction or by

convection. If we wish to deal, as in the present case, with conduction only,

we must introduce the condition that there is to be no convection. This

simply requires that there shall be no transfer of mass, and therefore that

expression (834), integrated over all values of c, shall vanish. This condition

becomes

ldvr a^e--' ^^ldhr{a^-^)x^e-'''^^
vdzJo yjr{x) h dz J ^ (a^)

The integrals have been calculated by W. Conrau, and the result is given

in Meyer's Kinetic Theory of Oases (p. 464)*. It appears that equation (835)

can be written in the form

i^ = 0-7l066^^ (836).
V dz h dz

* See also footnote to p. 315 below.
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415. A condition which ought also to be satisfied* is that the pressure

shall be the same throughout the gas in order that equilibrium may be

maintained. The condition for this is -i- ( ^ j
= 0, or

1 ^ ^ 1 ^ g^.
V dz h dz

and this is at once seen to be inconsistent with equation (836).

The origin of this inconsistency is easily found if we remember that the

analysis of this chapter has assumed Maxwell's Law to be true throughout

the gas, while in Chapter VIII it was conclusively shewn that Maxwell's Law
could not hold throughout the gas. Our analysis is in point of fact defective

because we have based it all on the assumption of an erroneous law of

distribution. The amount of divergence between equations (836) and (837)

gives a rough indication of the amount of error introduced by the erroneous

law of distribution.

416. As the divergence revealed in this way is not excessive, and more-

over as there is no better way available, we may proceed by assuming the

relation expressed by equation (836) to be true.

Assuming this relation, equation (834) becomes

Znc = 4= \x^-2-1l^m']\^afe-'^''dx (838).

Each of the molecules counted in S/ig carries kinetic energy of translation

a?
\mc^ or ^ across the plane z = Za. The amount of heat energy transferred

by this kinetic energy of translation is accordingly x^/2hJ per molecule. If

the total transfer of heat energy arising in this way is denoted by Tt we

obtain, on integration,
x=oo

''^=lwj'^^
(^•^^>

= ?—=/^ (840),
Sh^JiraWhm dz

where ^^ f' [.- 2-21066]^^.,,^^.

.' ^ («)

417. We may suppose, as in § 261, that the average, for all molecules,

of the ratio of internal to translational energy is /3, but we are not entitled

to assume that the transfer of internal energy is equal to /8 times that of

translational energy.

* See Meyer's Kinetic Theory of Gases, or Sommerfeld's paper in Vortrdge ilber die Kinetisehe

Theorie der Materie und der Elektrizitat, § 6, p. 158.



415-418] Meyer's Theory 313

For the internal energy to be expected in a molecule coming from

collision in the element dv is not yS times ^mc^, where c is the velocity

of the molecule, but is /8 times ^mc^, where mc^ is the average value of mc^

in the element dv. The internal energy to be expelled is therefore f /3/A,

where h is evaluated in the element dv, or

3/3.3 ^^dh
4 A- 4 h^ dz

in which all quantities are evaluated in the plane z = Zq.

If Ti is the transfer of internal energy, we shall have

'3/3 3 . /9 dh\

i-s(if+i"-^ls>" («*2)-

where Sn is given by expression (833), and the summation is equivalent to

integration with respect to 6, <f),
r and c. It unfortunately appears that

these integrations cannot be effected in finite terms.

418. As a very rough approximation, we may assume

r, = /3r, (843),

and more generally we may assume

ri = e^rt .-....(844),

where ^ is a pure number, of which the value cannot be calculated.

We can see that 6 must be less than unity, in the following way. The
process of conduction consists essentially in molecules coming from elements

such as dv and bringing to the plane z = Zq amounts of energy appropriate,

not to the plane z = Zo, but to the element dv. If the free path were

vanishingly small, this process could not occur; indeed, we may notice

that ^, as given by equation (821), vanishes when 1 = 0. The molecules

which describe very short free paths are therefore useless as carriers of

energy, and the molecules which are efficient carriers are those which

describe long free paths. But it has been seen (§ 370) that on the whole

the molecules which describe long free paths are the fast moving molecules.

These molecules have an amount of translational energy which is above the

average, but only have their average share of internal energy.

Thus the mechanism of conduction is specially favourable to the transfer

of translational energy, but is riot specially favourable to the transfer of internal

energy. Molecules which have an especially large amount of translational

energy to carry are ipso facto particularly efficient as carriers, but the same

is not true of molecules which possess a specially large amount of internal

energy. The former kind of energy is accordingly the more readily trans-

ferred, and so it results that d is less than unity.
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419. It has for a long time been recognised that the problem of the

conduction of heat must be complicated by the difference in the conditions

of transfer of translational and internal energy ; indeed, if this had not been

expected on theoretical grounds, a consideration of the values obtained

experimentally for the coefficient of conduction would soon shew that we had

to deal with something of this kind (cf § 425, below).

Stefan* and Boltzmannf made the assumption that the translational

energy of the molecules was passed on from place to place with greater speed

than the remaining energy. Since the internal energy travelled the less

rapidly, the conductivity would be less for a gas with much internal energy,

than for one in which the energy was mainly translational. Meyer seems

to have accepted these ideas in the first edition of his Kinetic Theory of

Gases (1877), but repudiated them in the second edition^ (1899).

From evidence to be brought forward later (Chap. XVI) it will become

clear that the two kinds of energy must travel at precisely the same rate

—

otherwise there could be no regular propagation of sound in a gas. At the

same time the considerations brought forward in § 418 will have shewn that

the internal energy plays a smaller part in the process of conduction than

the translational energy. The facts are as assumed by Stefan and Boltzmann,

although the explanation of them that we have arrived at is different from

theirs.

420. As in § 327, the total transfer of heat energy of all kinds must be

_^dT _^ dk

dz
^'"

'2h^Rdz'

Hence, using equations (843) and (844), we must have

^ dh

2h^R dz
= Tt + Vi = {l + eQ)Vt (845),

giving, on comparison with equation (840),

a = *<l±M^/ (846).

421. If we agree for the present to neglect the difference between and

unity, then, by use of the formulae

equation (846) may be replaced by

^^J^cC, (847).

* Wien. Sitzungsber. lxxii. [2] (1875), p. 74.

t Ibid. p. 458, Pogg. Ann. clvii. (1876), p. 457.

X English translation, p. 285,
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The value of k obtained before correction for persistence of velocities

(equations (801) and (803)) was

, _, . _ r 1-051

_V2TTva'
.(848).

By comparison with equation (843),

47V2^^^
(849),

3 1-051
^

giving the multiplying factor by which equation (824) must be corrected

when the molecules are treated as elastic spheres, but persistence of velocities

is neglected.

422. We proceed to the evaluation of the integral / given by equation

(841). Let us write

Jo y(^)

The value of /„ can be obtained by quadrature from values for i/r (x), and

tables of /„ to the upper limit 4 are given by Tait*. The values of the

complete integrals have been sent me by Mr L. V. Kingf, who finds

79 = 1-4625, 77 = -4631,

so that J = /a- 2-21066/7 = -4387.

Substituting this value, equation (849) becomes

5^ = e/ca (850),

where e = 1-395.

423. We have so far made no correction for the persistence of velocities.'

We are, however, trjdng to correct equation (824), namely,

by determining the numerical multiplier. We are therefore trying to

evaluate the ratio ^//c. Now ^ and k are each proportional to the mean
fi'ee path, and are therefore both affected in the same way by the persistence

of velocities. It is therefore clear that the fraction ^/k will be approximately

unaffected by this persistence.

* Trans. Roy. Soc. Edinburgh, xxxin. (1886), p. 74.

+ In a letter of date Dec. 17, 1908. Mr King has checked his valaes by an independent

computation, which also confirms the calculation of Conrau used in equation (836). I am
indebted also to Mr King for drawing my attention to an inaccurate equation which I had

unfortunately copied from Meyer's book into the first edition of the present book, namely the

equation ^= 1*6027 kC„, which appears to be the result of a faulty calculation by Meyer.

I have myself evaluated the integral I independently, and obtained a value agreeing very

closely vrith that sent me by Mr King.
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Hence, since we have used the value of k which was obtained before

correction, we can use the value of ^ given by equation (850) without

further correction, and shall obtain approximately accurate results.

As in § 395, a better result can be obtained by putting the correcting

factor 1/(1— 1^^) inside the integral (841), using the values for 6 given on

p. 279. I have evaluated the integral obtained in this way by quadrature,

but find that the only effect of this extra refinement is to increase the value

of 6 to 1-497.

424. Although it must be granted that Meyer's method is of value in

throwing light on the physical processes at work in conduction of heat, yet

it cannot be said to be very successful in approximating to the value of

the numerical multiplier e.

The exact value of e has been calculated by Chapman, by the method

already explained in the last chapter (cf. § 396). In his first paper he

arrives at the approximation e = 2*500 for all laws of force of the form

/xr~*, this including of course the special case s = 5 studied by Maxwell, for

which the value e = 2*500 is known to be exact (cf. § 356). In his second

paper he finds that further approximations alter this value by less than

one per cent, of its value. The greatest error in the first approximation

is found to occur in the case of elastic spheres, for which the value of e

is 2-522.

Experimental Values.

425. We proceed now to examine the relation between ^ and /c, which

is found experimentally. In the following table the first column gives the

observed values of ^, and the values of k are taken direct from the table

on p. 295. It has been more difficult to assign values to C„. When no

direct experimental determination is available, it is possible to use either

of the formulae of Chapter VII,

^«=^^"S' ^'' = Jm(7-l) ^^^^^-

The values of C^ for Hg, Ng, Og and COg have been calculated from

the first formula, using the values given in the table on p. 204 ; for the

remaining cases, the second formula has been used, except where otherwise

stated,

426. It appears that there is no uniformity in the values of ^/kG„.

An inspection of the values obtained shews, however, that ^/«;C„ is greatest

for monatomic gases, and least for gases in which the molecules are of most

complex structure (ethylene, carbon-dioxide, etc). In other words ^/kO^ is
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largest when /3 = 0, and smallest when ^ is large. This suggests that the

want of uniformity may come largely from the ignoring of the factor 6, by

which /3 ought to have been multiplied.

Values of ^ and of ^JkG^.

Gas 3^ (obs.) Authority *
3- (assumed) K (p. 295) c. 3//cC„ (obs.) 4(97-5)

Hydrogen 0003970
0003871

0003360
0003386

00005425

0000566
0000569

0000407

0000566
0000569

0000555

0000570
0000578

00003894

0000337

0000351

2

3

2

3

1

4

•0003970

•0003360

•00005425

•0000566

•0000407

•0000566

•0000555

•0000570

•0000389

•0000337

•0000351

•0000867

•000189

•000163

•000166

•0000961

•000172

•000179

•000189

•000210

•000142

•000138

2-43

•746

1

•177

•178

1

•274 §

•17211

•167

•156

•0745 T
•156

•148

1-89

2^38

1^88

1-91

1^55

1^91

1^86

1^93

2^49

• 1^52

1-72

1-90

2^44

r9i

191

1^55

1-91

1-88

1-90

2^44

1-72

173

Helium

Carbon-monoxide. .

.

Nitrogen

Ethylene

Air

Nitric oxide

Oxygen

Areon

Carbon-dioxide

Nitrous oxide

It will be remembered that the factor 6 was required by the circum-

stance that the moving molecules formed carriers which were more efficient

for the transport of translational than of internal energy.

Neglecting this circumstance, we found, in § 409, the simple formula

R
ar=«C, = f(l+^)j^« .(852),

Authorities

:

1. Eucken, Phys. Zeitschrift, xiv. (1913), p. 324.

2. Giinther {Halle Diss. 1906), quoted by Chapman.

3. Schwarze, Ann. d. Phys. xi. (1903), p. 303.

4. Value assumed by Eucken (I.e.). This is the mean of determinations by Winkelmann

and Wiillner.

t Determined by Vogel, and quoted by Eucken. The value of C^ for helium given by the first

of formulae (851) is, however, -767.

X Calculated from the first of formulae (851). Eucken takes C„=^177, Pier gives C„='175.

§ The mean of values given by Winkelmann [Poyg. Ann. clix. (1876), p. 177) and Wiillner

(Wied. Ann. iv. (1878), p. 321).

Ii
See §266.

U The value assumed by Eucken. Schwarze uses the value C„=*0740, based upon an

experimental determination of Cp by Dittenberger {Halle Diss. 1897). Pier gives C„=-0746.

The theoretical value given by formula (861) is '0767.
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this last form being obtained by substituting the value of (7„ from equation

(512). Chapman has shewn that when the energy is wholly translational

(/S = 0), the value of ^ given by this formula must be multiplied by (approxi-

mately) |. Eucken* has, however, suggested that the simpler formula (852)

may be accurate for the transport of internal energy, for which (cf. §418)

there is no correlation between the velocity of the molecule and the amount

of internal energy carried.

Combining these two contributions, we arrive at the formula

^ = 1(1+^)-^'^

I+/3

Jvfi

l+yS

= i(97-5)/^a ....(853),

the last two forms being obtained on substituting the values of (7^ and 7
from equations (512) and (514). According to this equation the ratio

^IkO-o ought to have a value \{^'^ — ^) which depends on the ratio of the

specific heats. In the last column of the table on p. 317 the values of

\ (97 — 5) are given, and are seen to agree very well with the observed

values of ^[kG^.

It is worthy of remark that Boltzmann-f" proposed a theory according

to which the value of ^/kG^ was to be ^(7—1), but this is obviously not

in accordance with observation
:J:.

Conduction of Heat and Electricity in Solids.

Conduction of Heat.

427. In 1900 Drude§ propounded a theory of conduction of heat in solids,

according to which the process is exactly similar to that in gases which we

have just been considering, except that the carriers of the heat-energy are the

free electrons in the metals.

According to the simplest form of this theory, the coefficient of conduction

of heat in a solid will be given by equation (821), namely

^=W§ («^^).

in which all the quantities refer to the free electrons in the solid, so that v is

the number of free electrons per unit volume, I is their average free path as

they thread their way through the solid, and so on. Since an electron is

* Phys. Zeits. xiv. (1913), p. 324.

t Fogg. Ann, clvii. (1876), p. 457.

., ,-.. . ;, ::: See Chapman, P/jR Trajw. 211, A, p. 465.

§ Ann. d. Phys. i. (1900), p. 666.
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believed to have no energy of rotation or internal motion, we may take

E= ^RT, and the formula for ^ becomes

^=^vclR .(855).

This formula is only of the roughest nature; when the complicated

physical conditions are taken fully into account, it must be replaced by

the much less simple formula (645) obtained by exact analysis in

Chapter VIII.

Conduction of Electricity.

428. Drude's theory supposes that the free electrons also act as carriers

in the conduction of electricity. If there is an electric force H in the

direction of the axis of a;, each electron will be acted on by a force He, and

so will gain momentum in the direction Ox at a rate He per unit time. The

time required to describe an average free path I, with average velocity c, will

be Ijc, so that in describing such a free path, the electron will acquire an

additional momentum in the direction of the axis of x equal to Sel/c.

Since the mass of the electron is very small compared with that of the

atom or molecule with which it collides, we may suppose (cf § 383) that

there is no persistence of velocities after collisions, so that an electron starts

out from collision with a velocity for which all directions are equally likely,

and, in describing its free path, superposes on to this a velocity

Bel

mc

parallel to the axis of x. It follows that at any instant the free electrons

have an average velocity Uq, parallel to the axis of x, given by

1 Eel

2 Trie
'Uo =

Across unit area perpendicular to the axis of x, there will be a flow of

electrons at the rate vUq per unit time, and these will carry a current i

given by

1 Sve'l
% = veua=

2 niG

The coefficient of electric conductivity a is defined by the relation i = o-H,

and is therefore equal to the coefficient of H in the above equation. To the

order of accuracy to which we are now aspiring, c may be supposed to be

the velocity of each electron, so that we may put \m(cf =i^RT, and the

conductivity is given by

-Mr • •• («««)•
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This is Drude's formula for electric conductivity. Numerically it can

obviously only give an approximation of the roughest kind*, and must be

replaced by the exact formula (650) when exact numerical values are

required.

Ratio of the two Conductivities.

429. The Wiedemann-Franz law. By comparison of equations (855)

and (856), we obtain

-(?)' J'

This is Drude's approximate formula for ^/cr. The exact formula of

Richardson and Bohr, obtained in § 332, was

^ = -^(^Yf (857).
a s — 1 \e J J

From these equations it appears that:

at a given temperature, the ratio of the electric and thermal conductivities

must he the same for all substances.

This is the law of Wiedemann and Franz, announced by them as an

empirical discovery in 1853f.

The Law of Lorenz. From equation (857) it also follows that:

the ratio of the thermal and electric conductivities must he proportional to

the absolute temperature,

a law put forward on theoretical grounds by Lorenz in 1872J.

Comparison with Experiment.

430. For elastic spheres (s = oo ) equation (857) becomes

(fyj («S8)'

the formula originally given by Lorentz§. Using the numerical values given

in § 8, we find that this equation becomes

—„= 1-462 X 10^ in absolute electromagnetic energy units.
(tI

For instance, at 18° C. (r= 291-1), the value of ^/o- ought to be

4-26 X 10'°. The values of ^/o- have been determined experimentally by

* Various attempts have been made to obtain more accurate values for the numerical

multiplier in Drude's theory; see in particular N. Bohr, Studier over Metallcrnes Elektrontheorie,

p. 54, and W. F. G. Swann, PMl. Mag. xxvii. (1914), p. 441. But nothing short of the full

analysis of Chap. VIII is likely to lead to an accurate result.

t Pogg. Ann. lxxxix. (1853), p. 497.

X Pogg. Ann. cxlvii. (1872), p. 429 and Wied. Ann. xiii. (1882), p. 422. § See § 332.
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Jager and Diesselhorst* for a large number of substances at 18° C. and

at 100° C. They find for example,

for three samples of copper, ^/o- = 6*76, 6"65, 6'71 x 10^",

„ silver, ^/o- = 6-86 x 10^

„ two samples of gold, "^ja = 7'27, 7'09 x lO^".

More elaborate experiments, covering a wide range of temperature, have

been conducted by Leesf. A sample of his results is given in the following

table, which gives values of —^ at different temperatures.

Values of —̂ x 10"

Temperature ...

From the experiments of Lees
From experiments

of Jager and
Diesselhorst

-170°C. - 60° C. -50°C. 0°C. 18° C. 18° C. 100° C.

Copper

Silver

Zinc

1-85

204

2-20

2-55

3-34

5-94

2-17

2-29

2-39

2-54

3-09

4-16

2-26

2-36

2-40

2-52

3-10

3-58

2-30

2-33

2-45

2-53

306

3-41

2-32

2-33

2-43

2-51

305

3-34

2-29

2-36

2-31

2-46

3-10

314

2-32

2-37

2-33

2-51

309

2-97

Lead

Steel

Manganine

431. These numbers shew that the observed values of ^/o-, although of

the same order of magnitude as those predicted by theory, are in every case

somewhat too large.

It is more difficult to test the values for ^ and a separately which are

predicted by theory, since the theoretical formulae for these coefficients

separately contain the quantities v and I, for which it is difficult to form a

reliable numerical estimate. But such evidence as is available suggests that

the formulae for ^ and <r separately do not shew anything like so good an

agreement with observation as that shewn by the formula for their ratio ^ja.

Even at ordinary temperatures the value predicted for a by equation (856)

can only be reconciled with the observed values of a by assigning to the

* Berlin. Sitzungsber. xxxvni. (1899), p. 719, and Abhand. d. Phys.-Tech. Reichsanstalt, in.

^1900), p. 369.

t C. H. Lees, "The effects of low temperatures on the Thermal and Electrical conductivities

of certain approximately pure metals and alloys" (Bakerian Lecture, 1908), Phil. Tram. 208, A,

p. 381.

J. G. 21
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product vl a value considerably greater than is consistent with other available

evidence as to the values of v and I. At low temperatures this difficulty

becomes so great that many physicists have been driven to the conclusion

that Drude's electron theory of conduction must be abandoned altogether*.

Kamerlingh Onnesf has found that at very low temperatures the specific

resistance of many metals is reduced to only an infinitesimal firaction of the

resistance at 0° C. ; at helium temperatures {i.e. below about 4° absolute) the

resistance may be only of the order of 10~" times that at ordinary tempera-

tures. At these very low temperatures the value of c in formula (856) will

be decreased to about one-tenth of its value at 0° C, while we cannot suppose

that any very great change occurs in the value of v. It accordingly appears

that the 10"-fold increase in the conductivity would require a 10"-fold

increase in I, if the theory on which formula (856) is based were true. This

requires that the electrons shall describe free paths measured in metres or

even in kilometres, a requirement which it is quite impossible to reconcile

with the known facts of the structure of matter.

The need for these long free paths can be seen in a very direct manner.

In one experiment described by Kamerlingh Onnes, a coil of lead wire was

placed in liquid helium, and was found to have a resistance equal to

5 X 10~'^ times its resistance at 0° C. The ends of the coil were then fused

together and a current started in the coil by magnetic induction. It was

found that the " time of relaxation " of this current

—

i.e. the time required to

fall to 1/e times its initial strength—was of the order of a day, whereas under

ordinary conditions it would have been about
Y^Y^/^/^

seconds. In an observa-

tion lasting one hour no perceptible decrease of the current could be noticed.

If the current consisted of free electrons in motion, each free electron in this

time would have had to describe a path of about 30,000 kilometres without

its motion being seriously checked by collisions.

Wien + has suggested a modification of Drude's theory, based on Planck's

quantum-theory, which attempts to remove this difficulty, while J. J. Thomson^

has put forward an alternative theory of metallic conduction on lines entirely

different from those of Drude. A third suggestion, also based on the

conceptions of the quantum-theory, will be referred to in Chapter XVIII

below. But it would be beyond the scope of this book to examine into

these theories in detail : their relation to the conceptions of the dynamical

theory of gases is only slight.

* Cf. J. J. Thomson, Phil. Mag. xxx. (1915), p. 192.

t Experiments with liquid helium, Konink. Akad. Wetemchappen, Amsterdam, Proc. xxiii.

(1914), p. 12.

J Berliner Silzungsher. vii. (1913), p. 184.

§ The Corpuscular Theory of Matter (p. 86) and Phil. Mag. xxx. (1915), p. 192.



CHAPTEE XIII

diffusion

Elementary Theories.

Meyei's Theory.

432. The difficulties in the way of an exact mathematical treatment of

diffusion are similar to those which occurred in the problems of viscosity and

heat conduction. Following the method adopted in discussing these earlier

problems, we shall begin by giving a simple, but mathematically inaccurate,

treatment of the question.

We imagine two gases diffusing through one another in a direction

parallel to the axis of z, the motion being the same at all points in a plane

perpendicular to the axis of z. The arrangement of the gases is accordingly

in layers perpendicular to this axis. Let us denote the mass-velocity of

the whole gas in the direction of z increasing by Wq, and the molecular

densities of the two gases by v^, v^. Then Vi, Vq and Wq are functions of

z only.

We assume that as far as the order of approximation required in the

problem, the mass-velocity of the gas is small compared with its molecular-

velocity, and we also assume that the linear scale of variation of either gas

is great compared with the average mean free path of a molecule. We
shall also, to obtain a rough first approximation, assume that Maxwell's

law of distribution of velocities obtains at every point, and that h is the

same for the two gases.

433. The number of molecules of the first kind, which cross the plane

z = Zo per unit area per unit time in the direction of z increasing, is

(^^^^ jjjv,e-^'^^^^'+'' + (^-^<>^'^wdudvdw (859),

in which the limits are from — oo to + <» as regards u and v, and from to oo

as regards w.

These, however, do not all come from the same point, and Vi must, in

accordance with the principles already explained, be evaluated at the point

21—2
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from which they started after their last collision. Those which move so as

to make an angle 6 with the axis of z may be supposed, on the average, to

come from a point of which the z coordinate \b Zq — \ cos 6, and at this point

the value of v^ may be taken to be

v^ = v^{Zo)-\cosdfi^\ (860).

If, then, we wish to go as far as the first order of small quantities we

divide the integral (859) into two integrals corresponding to the two terms

of the right-hand of equation (860).

We obtain as the value of the first

= ^1 (^o) (^y ffj^
~ '^'»i("'+^'+ w^ (w + Wo)dudvd\N (861),

in which W, as usual, stands for w — Wq. The limits of integration are from

— 00 to 4- 00 for w and v, and fi'om w = — Wo to oo . We have

T" e - '""i^'c^w =
f

"^^
e - '''"i'^' dv = f^?,

and, as far as the first power of Wo,

Hence we obtain, as the value of expression (861),

h^i (^o)
(

/- ,

—

+ i^o) = h^^ (^o) (Pi + u)o) (862),
\sj7rrimi J

where Cj, as in § 30, denotes the mean molecular-velocity of all the molecules

of the first kind, and is given by equation (44).

The second integral required for the evaluation of expression (859) is

X (1^^ {^^ {{L~hm,\u^^v'^H^v-w,f-\ ^ cos e dudvdw... (86S).

Owing to the presence of the multiplier ^(o-j , this expression is

already a small quantity of the first order, so that in evaluating it we may
put u'o = 0. Replacing cos 6 by o/jjc, it becomes

in which the integral is taken over all values of u and v, and over all

positive values of w.
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This expression is easily evaluated by noticing that it has just half the

value it would have if taken over all values of u, v, w, and is therefore equal

to 4-X (^j times the average value of — taken over all molecules, in a gas
\OZJzq c

having no mass-motion. This average value is equal to one-third of the

average of or c, and is therefore ^c^. Hence the value of ex-
c

pression (863) is

Combining this with expression (862), we find as the total value of

expression (859),

all quantities being evaluated in the plane z = z^.

This is the total flow of molecules across unit area of the plane z = Zq,

in the direction of z increasing. The corresponding fliow in the opposite

direction is

434. The rate of increase of the number of molecules of the first kind

on the positive side of the plane z = Zo, measured per unit time per unit

area, is the difference of these two expressions. Denoting this quantity by

Fi, we have

V, = v,w,-l\,'^-^^c, (864).

Similarly, for the rate of increase of molecules of the second kind,

r2= i^a^o-i^a g-^Ca (865).

Eliminating w^ firom these equations, we obtain

Ti ^2 - Tai/i = ^v{KiC2 -^ - ^v^XiCi -^ (866).

435. The pressure must be constant throughout the gas, so that we
must have

V-1 + Vi = cons.,

whence, by differentiation with respect to z and t, we must have

^^ + 1^ = 0, and r,-f-r, = o.

Thus equation (866) becomes

_ r = r = - ^i^fii+^-^^1^1 ^h (867)
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The number of molecules of the first kind in a layer of unit cross-

section between the planes z = Zq and z = ZQ + dz, 'is Vidz; the rate at which

this quantity increases is -^ dz, but is also found, on calculating the flow

across the two boundary planes, to be —~ dz. Hence we have

dv,^_dV^
dt~ dz

'

and on using the value of Fj provided by equation (867), and neglecting

small quantities of the second order, this becomes

'ii=^"'4 <«««)•

where ^^^
l v,\,c, + v,\c,

^
O Vi + 1^2

Equation (868) is the well-known equation of diffusion, 3)i2 being the

coefficient of diffusion of the two gases. Hence the coefficient of diffusion

is given by formula (869). Clearly it is symmetrical as regards the physical

properties of the two gases, but depends on the ratio vjv^ in which they

are mixed.

436. The foregoing analysis is essentially the same as that given by

Meyer in his Kinetic Theory of Gases, and formula (869) is generally known

as Meyer's formula* for the coefficient of diffusion.

Some special cases of this formula may be noticed.

Coefficient of Self-diffusion.

437. If we consider diffusion between two gases in which the molecules

are approximately of equal size and weight, and agree to neglect the

differences in size and weight, we may take X and c to be the same for

each gas, and so obtain

2) = ^\c (870).

Comparing this with the value of the coefficient of viscosity (equation (801))

K = ^Xcp,

f€

we obtain the relation 3) = - (871).
P

The quantity 2) obtained in this way may also be regarded as the

coefficient of self-diffusion or interdififusivity of a single gas. It measures

the rate at which selected molecules of a homogeneous gas diffuse into the

remainder.

* The actual value of 5)j2 given by Meyer {Kinetic Theory of Gases, p. 255, English trans.)

is fir times that given by formula (869). Meyer's formula has, however, attempted to take into

account a correction which is here reserved for later discussion (§ 439). Meyer does not claim

that his correction is exact.
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Dependence on Proportions of Mixture.

438. In the special case to which formula (870) applies, the value of 2)

is independent of Vi and V2, but formula (869) shews that in general 2),2

ought to vary with the proportions of the mixture. In the limiting case in

which Vijvz = 0, we have

3)i2 =̂ ^ ^ ^ 2 /m^

and there is a similar formula for the case of 1^2/^1 = 0, in which Wj and m^, are

interchanged.

Thus the coefficients of diffusion in these two cases stand in the ratio

shewing that the value of 2) ought according to Meyer's formula to vary

greatly with the proportions of the mixture.

This variation will be greatest for molecules of very uneven mass. For

example for the diffusion of Hg—CO2, the extreme variation would be 22 to 1,

for A—He it would be 10 to 1, and so on. An approximate formula for 2)i2

in these extreme cases is easily found.

When Wi is small compared with m^, then Cg is small compared with Ci,

and on inserting values of the free paths formula (869) reduces, when Vi and

V2 are comparable, to

ij^^ 0. 1
J

As we shall see later, the observed variation of 3)i2 with v-^jv^ is nothing

like as great as is predicted by these formulae, but we shall now try to

correct the formulae for persistence of velocities, and shall see that the

corrected equations predict a much smaller dependence of 2)i2 on v-ilv^.

Correction to Meyer's Theory when the Molecules are Elastic Spheres.

439. As was the case with the corresponding formulae for viscosity and

conduction of heat, the approximate formulae which have been obtained can

be improved by a correction of the numerical multiplier.

We shall consider first the correction to be applied to the simple formula

for self-diffusion, namely
% = ^\c (873)

= - (874).
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As before, there have been two sources of error introduced into these

approximate equations, the first arising from the assumption that X is the

same for all velocities, and the second from neglect of the persistence of

velocities.

As regards the first, it is clear that in expression (863), \ must be

replaced by \e and taken under the sign of integration. Hence instead of X

in the final result, we must have I, where

[ X.e-^'"'' c'dc —
iJ-^ = ^' (875).

Jo

This however is exactly the same as the I of the viscosity formula, of

which the value was found in § 394 to be

1051

V2'7r//o-2

Hence this correction affects 2) and k exactly similarly, multiplying each by

1*051, but does not affect equation (874).

440. We now examine the effect of the persistence of velocities. We
found in § 395, that when a molecule arrives at the plane z = 2o in a given

direction, the expectation of the distance it has travelled in that direction

is not X, but k\, where
1

k = 1-e

Here 6 is the persistence of velocities at a collision between two molecules

of equal mass, of which the value was found in § 381 to be "406. Thus the

expectation of the molecule belonging to the one gas or the other is not that

appropriate to a distance X back, but to a distance kX, and the effect of

" persistence " is therefore to multiply the value of 2) given in equation (873)

by a factor k. Also, as we saw in § 395, the effect of persistence on the

coefficient of viscosity is to multiply the simple expression ^Xcp by a factor

1/(1 -i^).

The two equations, both corrected for persistence, accordingly become

®"3(1-^)^^'

J. ^-
^""3(1-^^) ^^'

so that the corrected form of equation (874) must be

1-^0 K
2) =

6 p
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Putting 6 = '406, the value found in § 381, this becomes

K
2) = l-34- (876).

P

It is of interest to examine into the origin of the difference between the

effect of persistence of velocities on diffusion on the one hand, and on viscosity

and conduction of heat on the other. Diffusion, it will be seen, is a transport

of a quality, while viscosity and heat-conduction are transports of quantities.

The difference rests ultimately upon the circumstance that qualities remain

unaltered by collisions, whereas quantities do not.

441. The effect of persistence when the molecules are not of equal mass

is more difficult to estimate.

When the molecules were equal, the expectation of the distance a molecule

had come was increased by persistence from \ to

\-\-e\ + 0'\ + d^\ + ...=^r^ (877).

When the molecules are of unequal masses, the persistence will be

different at different collisions, and instead of expression (877), we shall

have one of the form

\ +p\ + pqX"" -^ pqr\^ + ".....(878),

where p, q, r, ... are the different persistences at the various collisions.

Suppose we are considering the motion of a molecule of mass m^ in a mixture

of molecules of masses m^, m^, mixed in the proportion v-^jv^. Then of the

quantities p, q,r, ... a certain proportion, say /3, of the whole will have an

average value = '406, these representing collisions with other molecules of

the first kind, while the remainder, a proportion 1 — /8 of the whole, will

have an average value which we shall denote by 6^2, this being the persistence

for a molecule of the first kind colliding with one of the second kind.

Let P denote expression (878), and let s denote y8^ + (l — /3)^i2, this

being the expectation of each of the quantities p, q, r, We have

P = X+ p\ + pq\^ + pqrS? + ...,

Ps= s\ + psX^ + pqsX^ + . .
.

,

and hence, by subtraction,

P (1 - s) = \ + (p - s)\ -{^ p(q - s)\' + pq{r - s)X^ + ....

Clearly the expectation of the right-hand side is X, for the expectations

of ^ — s, q — s, r — s, ... are all zero. Hence the expectation of P is
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Accordingly the effect of persistence in this mixture of gases is to

increase A, to a value of which the expectation is that on the right-hand

of equation (879).

In § 369 we found for the mean chance of collision per unit time for a

molecule of the first kind, moving in a mixture of two kinds of gas,

In this the first term represents collisions with molecules of the first

kind, and the second represents collisions with molecules of the second kind.

The ratio of these two terms is therefore exactly the ratio /8 : 1 — /3, and

we have

_;g ._ 1-/3

Each fraction is equal to

1

V27ryiO-i^ + TTv^Sj a/(i + ^)
and this again is equal to Xj by equation (877),

Using this value for ^, we find for the value of expression (879), the free

path of a molecule of the first kind increased by persistence,

^^1= ^ (880),

(1 - d) ^/2rrv,a,^ + (1 - 6,,) irv.Sj^ (l +
^j

and for the corresponding quantity for the second molecule,

P2= ^-

(881).

(1 - 6) s/2irv,ai + (1 - 6,,) irv.S.iJ (l + ^')

On replacing Xj, A^ in equation (869) by their enhanced values, as given

above, we find as the form of Meyer's equation, after correction for persistence

of velocities,

^^Iv^P^c^^tv^P^
^gg2).

3 Vi + i/g

442. In this formula the value of 6 is always '406 ; the value of O-^z

depends, as was seen in § 383, on the ratio of the two masses. It was found

that 012 was of the form

^'iz
=

T-—;— >

mi + m^

where a was a small positive number, depending on the ratio of the masses,

but lying always between and ^, and equal to •188 for equal masses.
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When
j^i is small, we have, instead of the limiting form given in § 438,

1 i/gPiCi _ 2 / rriz

3 i/i + 1/2 3(1 — ^12) TT {v^ + Vz) Si2^V 7r/imi(mi + m^)

2

V irh \mi m.
.(883).

The limiting form, when v^ is small, is the same except that a^^ is replaced

by ffai- Thus the ratio of the extreme values of 2) as vjv^ varies is

2^yi=0_ 1 + «2i

2)^2= 1 + «12'

instead of the ratio m^ : Wi found from Meyer's formula in § 438. Since the

extreme values possible for a are and ^, it appears that the greatest range

possible for 3) is at most one of 4 : 3.

Thus, when persistence of velocities is taken into account, Meyer's formula

yields values which do not vary greatly with the proportion Vi : V2 of the

mixture *.

The Stefan-Maxwell Theory.

443. Another theory of diffusion has been put forward by Stefan
-f-

and

Maxwell J, based upon physical principles which will now be explained.

It will be noticed that equation (868) is of the same form as the well-

known equation of conduction of heat : it indicates a progress or spreading

out of the gas of the first kind, similar to the progress and spreading out of

heat in a problem of conduction. The larger 3) is, the more rapidly this

progress takes place, and 3) is largest when the free paths are longest and

vice versa. Long free paths mean rapid diffusion, as we should expect.

Now the formula for the mean path \j in a mixture of two gases was

found in § 364 to be

X,= '• -^ (884),

^^2^7^v,a^ + ^(l+^^'r^V2S,^

where S12 is the arithmetic mean of the diameters of the two kinds of

molecules. The larger the denominator in this expression, the smaller Xj

* This is pointed out clearly in a valuable paper by Kuenen ("The diffusion of Gases according

to O. E. Meyer," Supp. no. 28 to the Communications from the Phys. Lab. of Leiden, Jan. 1913).

Kuenen takes a uniformly equal to "IBS, its value when mi = m2, and assumes the number of

collisions to be in the ratio v{^ : j-ji/j. For these reasons his result is different from mine, but

the principle is essentially the same.

f Wiener Sitzungsberichte, lxiii. [2] (1871), p. 63, and lxv. (1872), p. 323.

t Coll. Scieniifk Papers, i. p. 392, and ii. p. 57 and p. 345. See also Boltzmann, Wiener

Sitzungsbenchte, lxvi. [2] (1872), p. 324, lxxviii. (1878), p. 733, lxxxvi. (1882), p. 63, and
Lxxxviii. (1883), p. 835. Also Vorlesungen ilber Gastheorie, i. p. 96.
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will be, and so the slower the process of diffusion. Both terms in the

denominator of expression (884) accordingly contribute something towards

hindering the process of diffusion.

The second of these terms arises from collisions of the molecules of the

first kind with molecules of the second kind, and that these collisions should

hinder diffusion is intelligible enough. But it is not so clear how collisions

of the molecules of the first kind with one another, represented by the first

term in the denominator of expression (884), can hinder the process of

difi"usion. When molecules of the same kind collide, their average forward

motion will, from the conservation of momentum, remain unaffected by the

collision, and it is not easy to see how the process of diffusion has been

hindered by the collision.

444. If we entirely neglected collisions between molecules of the same

kind, we should have free paths given by the equations

^1= —77 r ; ^2 =—
J-.

r (885)

in place of equation (884). Using these values for the free paths, equation (869)

becomes

-i- 12
— ~~ 7

2

or, in terms of the molecular-velocities*,

x/-^(- + -) (886),
V 7rh \mi mj

* Meyer, using the value of <Di2 already explained (see footnote to p. 326), obtains a value

for 2)i2 on Maxwell's theory equal to ftt times this, namely,

^"=8^./'^^.'+^ '''""•

and this same value is given by Maxwell {I.e. ante and Nature, viii. (1873), p. 298). On the

other hand, Stefan (Wiener Sitzungsber. lxviii. (1872), p. 323), Langevin (Ann. de Ckimie et de

Physique, [8], v. (1905), p. 245), and Chapman [Phil. Trans. 211, A, p. 449) all arrive at the

formula

=^.'=3sb^^"?^'
<''"'

which differs from (887 a) by a factor |. Chapman and Langevin both extend their method to

the general law of force nr'" ; their method is somewhat similar to that of Maxwell as given in

Chap. IX (§ 358), but they assume Maxwell's law of distribution to hold, so that their results are

only exact for the case of s = 5, for which their result agrees with Maxwell's formula (730).
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445. If the two kinds of molecules are of equal mass and size, formula (887)

becomes

3 V27ri/cr2

which may be contrasted with Meyer's uncorrected formula (870).

Using Chapman's corrected formula (809) for the coefficient of viscosity,

namely

/. = -499 ^^

equation (888) may be put in the form

2) = 1-336- (889),
P

agreeing almost exactly with equation (876) which was obtained on correcting

Meyer's formula for persistence of velocities.

It is more difficult to compare equation (886) with equation (882) which

was obtained by correcting Meyer's formula for persistence of velocities. We
at once notice the outstanding difference between the two, namely that

Meyer's formula depends on the ratio 1^1/^2, whereas Maxwell's formula (887)

does not. In the limiting case of ^1 = 0, Meyer's formula reduces to

formula (883), which is identical with Maxwell's formula (886) divided

by the factor (1 -f aja), where 0^2 is the small number defined in § 442.

Thus it appears that the formulae approximate closely, although they

naturally cannot agree exactly, as one predicts variation with Vi/v^, while

the other does not.

Experimental Evidence.

446. The question of how far the coefficient of diffusion depends on the

proportion in which the gases are mixed is naturally one which admits of

experimental investigation. A series of experiments* have recently been

made at Halle to test this question, a summary of which will be found in a

paper by Loniusf.

Experiments were made on the pairs of gases Ha—O2, Ha—Na and

Na—O2 by Jackmann, on Hg—Oa and Ha—CO2 by Deutsch, and on He—

A

by Schmidt and Lonius. We should expect the greatest variation of 3)i2

with i/j/i'a to occur when the ratio of the masses of the molecules is most

uneven (§ 438). The following table | gives the values obtained for !Di2

* R. Schmidt, Ann. d. Phys. xiv. (1904), p. 801, and the following Inaug.-Dissertations :

R, Schmidt (1904), 0. Jackmann (1906), R. Deutsch (1907), and Lonius (1909).

t Ann. d. Phyt. xxix. (1909), p. 664. See also Chapman, Phil. Trans. 211, A, p. 478.

X Lonius, I.e. p. 676.
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with different values of Vijv^ for the two pairs of gases for which this

inequality of masses is greatest.

Pair of Gases

(1, 2 respectively) "2
5)i2 (observed) Observer

H2-CO2 3 0-21351 Deutsch
1 0-21774

4 0-22772
T>

He—

A

2-65 0-24418 Lonius
2-26 0-24965
1-66 0-25040 Schmidt
1 0-25405
•477 0-25626 Lonius
•311 0-26312 »

These experiments undoubtedly shew considerable variations in 2)i2, but

they are insignificant compared with those predicted by Meyer's uncorrected

formula (872), and are small even compared with those predicted by Meyer's

corrected formula (882). For instance the following table gives a comparison

between the extreme values of ^^^ for He—A observed, and those predicted

by these formulae.

D12 (calculated)

^ll^i S)i2 (obs.)

Eqn, (882) Eqn. (872)

2-65 •961 •910 -548

1-00 1-000 1-000 1-000

3-11 1-036 1-110 1-526

Thus although a variation in 2)i2 is observed, of a nature similar to

that predicted by Meyer's theory, yet it appears that Maxwell's simpler

formula (882) gives results which approximate more closely to the truth

numerically.

Accordingly, in the remainder of this chapter we shall be content to

disregard the dependence of 2)i2 on the ratio Vijvi.

Coefficient of Self-Diffusion.

447. The simplest formula to test numerically is that for self-diffusion,

but the coefficient of self-diffusion of a gas into itself is not a quantity which

admits of direct experimental determination.
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A convenient plan, adopted by Lord Kelvin, is to take a set of three

gases for which the coefficients 2)i2, ^^, ^sv are known. All the quantities

in formula (886) are then known with great accuracy except only S^^- Hence

from the three values of "Dia, ^^, !l)3i we can calculate *Sii2, 8^, S^i and so

deduce values of o-j, a-g, 0-3. Instead of comparing these values with other

determinations of o-j, o-g and 0-3, Lord Kelvin inserted them into formula (888)

and so obtained the coefficients of self-diffusion of the three gases in question.

Lord Kelvin* gives the following values of coefficients of interdiffusivity

of four gases, calculated from the experimental determinations of Loschmidt.

Oases

H. -(1)

O. -(2) {CO—(3)

C02-(4)

Pairs of Gases !Dn

(12, 13, 23) 1-32

(12, 14, 24) 1-35

(13, 14, 34) 1-26

Mean 1-31

Pairs of Gases ^^

(12, 13, 23) -193

(12, 14, 24) -190

(23, 24, 34) -183

Mean -189

\

Pairs of Gases JDjg

(12, 13, 23) 169

(13, 14, 34) 175

(23, 24, 34) -178

Mean '174

Pairs of Gases 2)^

(12, 14, 24) -106

(13, 14, 34) Ill

(23, 24, 34) -109

Mean 109

The agreement inter se of the values obtained by different sets of three

gases gives a striking confirmation of the theory, except of course as regards

the numerical multiplier which does not affect the values obtained for

2)„, 2)^2, etc.

448. We may next test this numerical multiplier. Both forms of the

theory combine in predicting the relation (approximately)

2) = 1-336

-

P

for elastic spheres, while Maxwell's theory given in Chapter VIII predicted

the relation (exactly)

2) =1-504

-

P

for molecules repelling according to the inverse fifth-power of the distance.

In the following table, the first column gives k, the mean of the values

given in the table of p. 295, the second column gives p, the third gives the

* Baltimore Lectures, p. 295.
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value of 2) calculated from Loschmidt's experiments, and the fourth gives the

value of 2)p//c.

Gas K (p. 295) P (p. 131) 3) (p. 335)
K

Hydrogen

Oxvsfen

-0000867

-0001891

•0001628

-0001431

-0000899

•001429

•001250

•001977

1-31

•189

•174

•109

1-36

1^43

1-34

1-50

Carbon-monoxide. .

.

Carbon-dioxide

It at once appears that ^pJK has in each case a value intermediate

between the two values 1"336 and 1'504 predicted by theory for elastic

spheres and inverse fifth-power molecules. Not only is this so, but the

values of ^pJK vary between these limits in a manner which accords well

with the knowledge we already have as to the laws of force (/a?"~*) in the

different gases concerned, as the following figures shew

:

Value of s
2)p

K

Theory

Hydrogen

Carbon-monoxide. .

.

Oxygen

Carbon-dioxide

Theory

12

9-3

7-9

5-2

5-0

1-336

1-36

1-34

1-43

1-50

1-504

1

Coefficient of Diffusion for Elastic Spheres.

449. In the following table are given the observed values* of 2)i2 for a

number of pairs of gases in which the molecules are comparatively hard,

having values of s greater than 8 in the table of p. 302. The table gives

also the values of S-^z calculated from them by formula (887) (using values

of c given on p. 131), and, in the last column, the values of S^z calculated

from the coefficient of viscosity as on p. 295.

* The values used both in this and the succeeding table are those given by Chapman {Phil.

Trans. 211, A, p. 480) from material provided by the Smithsonian tables (1910 edition).
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The agreement between the two sets of values of S^^ is as good as

could reasonably be expected, providing a corresponding confirmation of

Gases 35l2
(observed) (calc. from ©jj)

^12
(calc. from viscosity)

Hydrogen—Air

—Oxveen

0-661

0-679

0-1775

0-174

0-642

0-183

3-20 X 10-8

3-15

3-66

3-71

3-25

3-62

3-20x10-8

3-15

3-67

3-69

3-23

3-70

Oxygen—Air

„ —Nitrogen

Carbon-monoxide—Hydrogen ...

„ —Oxygen

formula (889). When one or both of the two kinds of molecules involved

is softer than those in the foregoing table the agreement is still good

although less striking than that found above, as is shewn in the following

table

:

Gases ®12
(observed)

,
Sl2

(calc. from

®12)

(calc. from
viscosity)

Carbon-dioxide—Hydrogen

—Air

„ —Carbon-monoxide...

Nitrous oxide—Hydrogen

0-538

0-138

0-136

0-535

0-0983

0-486

0-101

3-53x10-8

4-00

4-06

3-54

4-49

3-72

4-95

3-61 X 10-8

4-13

4-16

3-64

4-57

4-10

4-65

„ —Carbon-dioxide

Ethylene—Hydrogen

J, —Carbon-monoxide

General Formulae.

450. In two special cases, we have obtained perfectly rigorous values

for 2)i2. In § 333 (equation (654)) we found the solution

!D,2 =
2 V TtAWj

Vi {hm^m.iKy ~^ Ii (s)

for the case in which v^jv^— and mi/w2 = 0.

J. G.

.(890)

22
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Also in § 359 (equation (727)) we obtained Maxwell's solution

. - _ ^''~'ihm,m,{v, + v,)A,\ "~X~ •v--:-;-^"''^^

for the case in which 5 = 5, independently of the values of ratios v-^jv^

and Wi/ma. Since F (|) = f sjir, this last solution may be expressed in

the form

^„ = ir(J) J\i^) (892).

The two solutions (890) and (892) are both perfectly rigorous and exact,

and so must be expected to agree in the case which they cover in common,

namely the case of s = 5, vjvz = 0, mjm2 = 0, as it is easily verified that they

do. They are two special cases of a general solution, which we have not

been able to find, but are trying to approximate to.

The general formula will be more complicated than these formulae, for it

will depend on s, on i/j/i/a and on mi/m^.

We have found theoretical reasons for expecting that the general formula

will not depend to any great extent on Vi/v2, but only on the total number of

molecules Vi + v,,, and this expectation is borne out by experiment (§446).

Let us, then, agree to disregard the dependence of 2)i2 on Vi/vz, and assume

that it depends only on v^ + v^. Equation (890) may now be replaced by

fC4t+2) /-i-

and this must be the form assumed by the general formula when m-^jmi = 0.

The coefficient of diffusion X>i2 must necessarily be symmetrical as regards

the two kinds of molecules, and formula (893) is not symmetrical. It can

however easily be made so, for since it applies only to cases in which rrii

vanishes in comparison with m^, it may with equal accuracy be expressed in

the symmetrical form

2

«n,rri + 2

{vi + v^) {hm^m^Ky - i I^ {s)

Let us consider what errors occur when this formula is used for all values

of s and of Tnijm^.

The formula is absolutely rigorous when mi/w2 = 0, for all values of s, and

the same is of course true when mjm^ = oo , When s = 5, the formula agrees
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with Maxwell's exact formula (892), and is therefore rigorous for all values of

mri/m^, when 5 = 5.

The errors vanish, then, when either 5 = 5 or rriilm^ = or oo . They may
be expected to be largest when m^ is comparable with m^ and s = x . But
when s= 00 , the value of Jj (s) is known to be irSiz^, so that the formula

reduces to

2
2),.= \/-^ (-+-)V Trh \mi m^J

which agrees exactly with the Maxwell-Stefan formula (886). This is the

formula which has been seen in § 449 to be in extremely good agreement

with experiment. Thus it appears that the general formula (894) must be

very nearly accurate for all values of s, m^ and m^.

22—2



CHAPTER XIV

THE EVIDENCE OF THE KINETIC THEORY AS TO

THE SIZE OF MOLECULES

Evaluation of \(t from Free Path Phenomena.

451. In the last three chapters we have considered the free path

phenomena of viscosity, conduction of heat and diffusion, and have found

for the three corresponding coefficients formulae involving in every case

the quantity a, the diameter of the molecule of the gas in question. Thus

we have three phenomena from which the molecular diameter may be

calculated, and we shall first collect the evidence provided by these three

phenomena as to the size of molecules. For the present, we shall proceed on

the supposition that all molecules may be treated as elastic spheres. The

error involved in this assumption will naturally be greater in the case of soft

molecules such as those of carbon-dioxide, than in the case of hard molecules

such as those of hydrogen or helium.

The values of a which can be deduced from the phenomenon of viscosity

have already been calculated and exhibited in the table on p. 295. A similar

set of values can be deduced from the observed values of ^, the coefficient of

conduction of heat given on p. 317. Finally, it is possible to obtain a

third set from the coefficients of diffusion given in the tables on p. 337,

although the procedure here is rather more complicated than in the two

former cases. In these tables we have thirteen observations from which

to determine the eight molecular diameters involved. A least-square solution

would be laborious, and of little real value since obviously some of the values

given for 2)i2 have a much greater observational value than others. I have,

therefore, adopted the following simple plan

:

The values of the molecular diameters of the three gases hydrogen,

oxygen and air have been determined solely from the first three entries

in the first table. The value of o- for nitrogen can then be obtained from the

fourth entry. The two remaining entries then give the two somewhat
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discordant values 1"91 and 1*81 for the radius of the molecule of carbon-

monoxide, and I have assumed the true value to be the mean of these,

namely 1"86.

The three first entries in the second table then give for the radius of the

CO2 molecule the values 214, 2-20, 2-12, and I have assumed the true value

to be the mean of these, namely 2'15. In a similar way I have taken mean

values for the radii of the molecules of nitrous oxide and ethylene.

The three sets of values obtained in this way are exhibited in the

following table. The entries in the fourth column give the mean of the

entries in the preceding columns, and the entries in the last column give

the mean free path calculated by Maxwell's formula (56).

Values of Molecular Radius and Mean Free Path.

Gas

Value of i cr X 10* calculated from

Mean
value of

^(rxlOS

Mean
free path
(cms.)

Viscosity
Conduction

of heat
DifEilsion

Hydrogen

Helium

Water-vapour

Carbon-monoxide. .

.

Ethylene

1-34

1-08

2-27

1-89

2-76

1-88

1-86

1-86

1-81

1-82

2-27

2-30

2-81

3-06

2-68

3-72

2-05

2-42

1-34

1-14

1-90

2-76

1-91

1-86

1-87

1-80

1-80

2-42

2-31

1-34

1-86

2-74

1-90

1-86

1-81

2-15

2-27

1-34

1-11

2-27

1-88

2-75

1-90

1-86

1-86

1-81

1-81

2-28

2-29

2-81

3-06

2-68

3-72

2-05

2-42

ll-6xlO-«

17-1

4-0

5-8

2-7

5-7

5-9

5-9

6-3

6-3

4-0

3-9

2-6

2-2

2-9

1-5

4-9

3-5

Nitrogen

Air

Nitric oxide

Oxygen

Argon

Carbon-dioxide

Nitrous oxide

Methyl chloride ...

Ethyl chloride

Chlorine

Benzene

Krypton

Xenon

The agreement of the different entries inter se is surprisingly good

considering the assumptions which have been introduced. Rather naturally,

it is less good for gases with soft molecules than for those with hard.
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Evaluation of ^a- from Deviations from Boyle's Law.

452. In each of these phenomena the molecular diameter has entered

through the free path. In Chapter VI we found that the molecular diameter

could be estimated from the observed deviations from Boyle's Law, and the

diameter then entered through the total volume occupied by all the molecules

in a given space. The values obtained for ^cr, arranged for comparison with

those just found, are as follows :

Gas
from Boyle s Law

4<r

from free path

Hydrogen 1-26x10-8 1-34x10-8

Helium 0-98 1-11

Nitrogen 1-77 1-90

Air 1-65 1-86

Carbon-dioxide . .

.

1-70 2-28

Although these numbers agree tolerably well, the agreement must to

some extent be regarded as accidental. For, as we saw in § 402, the two

sets of values of o- do not really measure the same quantity. Of the five

gases in the table, the two which have the hardest molecules are hydrogen

and helium, and for each of these we may suppose that s = 12 approximately

(cf. § 404). Thus the correcting factor which was found to be necessary in

§ 402 has for these gases the value \/r (y^y) or 1"079. We must divide the

values for ^a obtained from Boyle's Law by this number and find for the

quantity

H'

BT(s-l)_

the corrected values 1-18 for hydrogen and 0'91 for helium.

The values of ^o- obtained from free path phenomena attempt to measure

this quantity directly, but the values obtained are now seen to differ from

those just found by about 13 per cent, for hydrogen and about 22 per cent, for

helium. For the softer molecules, such as that of carbon-dioxide, the agree-

ment is naturally very much worse. We have found for the CO2 molecule a

correcting factor 1-.5363 (cf. equation (812)), so that the entry 1'70 for ^a

ought to be reduced to 1-107. But as mentioned in § 401 there are other

corrections to be made before we can start comparing the two values

of ^(T.
.
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The general result, however, emerges quite clearly that the values for

^o- obtained from Boyle's Law are uniformly smaller than those obtained

from free path phenomena. A simple geometrical interpretation of this can

be given. In measuring the deviations from Boyle's Law we are virtually

measuring the volume of a molecule, while in measuring the free path in a

gas we are measuring the cross-section of the same molecule. The figures

obtained suggest that the mean radius of the molecule, regarded as a solid, is

less than the mean average radius of the cylinders circumscribing its various

cross-sections. But this, simply as a matter of geometry, must necessarily

be the case if the molecule has any shape except that of a sphere.

To illustrate this suppose that the molecules of a gas were constituted

of coin-shaped discs of radius a and small thickness h, and therefore of total

volume Tva^h. Except for a coiTection necessitated by the fact that these

molecules would not behave like elastic spheres at collision, the deviations

from Boyle's Law would lead to a value of a such that ^ttct^ = ira^ h or

o- = {Qa^ hy, while measurements on the free path would lead to the value

cr = a. If A is small, the value of (6a^hy will of course be very much smaller

than a.

The difference between the two sets of values found for ^cr may accord-

ingly be interpreted as indicating that the molecules are not really spherical.

The comparative closeness of the two sets of values for hydrogen and helium

suggests, however, that for these gases the assumption of spherical molecules

will give a tolerably good approximation to the truth. For the softer

molecules such as carbon-dioxide it is perhaps safest not to attempt to

draw any conclusions, in view of the difficulties already explained in § 402.

It need hardly be said that what we are concerned with in these evaluations

of ^o- is the extension of the field of force surrounding the molecule, and

not the size of the material structure out of which this field of force

originates. We shall see how this latter structure can be measured in

§ 456.

453. Some investigators avoid the difficulties arising out of the

"softness" of the molecules, by assuming Sutherland's formula (816) to

hold, and comparing the values of o- deduced from Boyle's law with the

values of the diameter cr^ of the hard kernel. For instance Eucken*, in a

very interesting paper, has given the following comparison, amongst others,

of diameters of molecules calculated from deviations from Boyle's Law and

from free paths:

* Phys. Zeitseh. xiv. (1913), p. 331. Eucken also calculates values for three other gases

—

Helium, Hydrogen and Benzene, but the values agree nothing like so well as those given here.

The author states that the material for the calculation of ^<r from Boyle's Law is uncertain in

the case of the gases helium and hydrogen. See also Chapman, Phil. Trans. 211, A, p. 481.
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Gas from Boyle's Law from free path

Nitrogen

Oxveen

1-540x10-8

1-447

1-427

1-602

1-527x10-8

1-467

1-417

1-601

Argon

Carbon-dioxide ...

It must be remarked that Eucken uses values of Van der Waals' quantity 6

which are deduced from the critical data, and so may differ very widely from

true observational values (cf § 205). For this reason Eucken's values of -^o-

deduced from Boyle's law differ considerably from those given on p. 342,

and little seems to be gained by comparing ^a evaluated from the critical

temperature with \ a^ which refers to temperature T = cc . If we could

be perfectly certain of all the physical assumptions underlying Eucken's

calculation, we should have proof beyond question that all these molecules

were very approximately spherical in shape.

Evaluation of ^<t from Densities in the Solid and Liquid States.

454. A further estimate of the molecular radius can be formed by a

consideration of the maximum density of the substance when in the solid or

liquid state. This method, however, only enables us to calculate an upper

limit to the molecular radius.

For instance, Dewar* has found the density of solid hydrogen at 13-2°

absolute to be '0763. The mass of a cubic centimetre of solid hydrogen

is accordingly '0763 grammes, while the mass of each molecule (cf. § 8) is

known to be 3-27 x 10~^* grammes. The number of molecules in a cubic

centimetre is accordingly 2'33 x 10^^ If the molecules of hydrogen are

regarded as hard spheres of diameter a, these molecules, if packed as closely

as possible, would occupy a volume

2-33 X 10^2 X -^

.

\/2

This volume, then, is certainly less than a cubic centimetre. Or, what

comes to the same thing, the value of the molecular radius of hydrogen is

certainly less than the value of ^cr which makes the above expression equal

to a cubic centimetre. This value is

^o-= 1-964 xl0-«

In this way we obtain a superior limit to the value of ^a for hydrogen.

The similar limits for other gases can be obtained in the same way, and we

arrive at the following table

:

* Proc. Roy. Soc. lxxiii. (1904), p. 251.



453-455] Determined from Solid and Liquid Densities 345

Substance Temp. (C.) Density
Upper limit Value of ^0-

(p. 341)

Hydrogen (solid)* -259-9°

-271-6

4-0

- 205-0

-21

-252-5

-252-5

-189

-79

-20-6

-20

-80

-169

-140

0-0763

0-1456

1-0000

-08558

0-414

1-0265

1-4256

1-423

1-53

1-003

0-983

0-925

1-6602

0-899

2-15

3-52

1-96x10-8

1-99

1-72

2-11

2-67

1-98

1-85

2-01

2-02

2-31

2-45

2-64

2-30

2-92

- 2-22

2-24

1-34x10-8

1-11

2-27

1-88

2-75

1-90

1-81

1-81

2-28

2-29

2-81

3-06

2-68

3-72

205

2-42

Helium (liquid) t

Water

Carbon-monoxide |

Ethylene §

Nitrogen (solid)*

Oxygen (solid)*

Argon (liquid) J

Carbon-dioxide (solid) || ...

Nitrous oxide §

Methyl chloride IT

Ethyl chloride**

Chlorinett

BenzeneJJ

KryptonvbS

XenonSvj

Considering the general crudeness of the supposition upon which we have

been working, the comparative agreement of these two sets of figures cannot

be regarded as otherwise than satisfactory. In regarding all molecules as

spherical, regardless of their true shape, we run the risk of an error in ^o-

comparable with the value of the quantity itself That discrepancies of this

order of magnitude occur in the two sets of figures cannot, therefore, be

regarded as a matter for surprise. At the same time the circumstance that

some of the values for ^o- given in the last column are greater than their

upper limits is one which demands explanation.

455. If the molecules were known to be hard spheres, the circumstance

just mentioned would be perfectly incomprehensible. But when we allow for

the deviations from perfect hardness the difficulty is at once removed. For the

upper limit is obviously an upper limit to the radius of the hard kernel of

the molecule, and so must not be compared with the value of ^o- at 0"^ C, which

is considerably larger than that of the hard kernel.

* Dewar, Proc. Roy. Soc. lxxiii. (1904), p. 251.

t Kamerlingh Onnes (1911). t Baly and Donnan (1902).

§ Cailletet and Mathias, Joum. de Phys. [2], v. (1886), p. 555.

II
Behn (1900). IT Vincent and Delachanal, Comptes Rendus, lxxxvii. (1878), p. 987.

•* Darling, Ann. Chem. 160 (1871), p. 214, and Recueil de Constantes Physiques.

tt Knietsch, Ann. Chem. 259 (1890), p. 100. ^XX Recueil de Constantes Physiques, p. 146.

§§ Ramsey and Travers (1900).
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Assuming the relation between the radius of the hard kernel {^(t^) and the

effective radius of the molecule to be that given by Sutherland's formula (816),

it is easy to deduce values of ^a^ from the observed values of ^o- at 0° C,

A set of such values is given in the following table, together with the values

of the upper limit, now regarded as an upper limit for ^o-«,, for comparison.

Gas
Assumed

value for C
Value of \<T^

(calc.)

Upper limit

to i(r^

Hydrogen

Helium

Carbon-monoxide ...

Ethylene

76

79

100

249

112

132

169

240

260

454

199

142

252

1-19x10-8

0-98

1-62

1-99

1-60

1-48

1-42

1-66

1-64

1-72

2-04

1-66

1-76

1-96x10-8

1-99

2-11

2-67

1-98

1-85

2-01

2-02

2-31

2-45

• 2-30-

2-22

2-24

Nitrogen

Oxygen

Argon

Carbon-dioxide

Nitrous oxide

Methyl chloride

Chlorine

Krypton

Xenon

It will be noticed that the upper limit is now in every case above the

value for ^a-^.

Evaluations of ^a from Dielectric Constant.

456. Finally, mention must be made of an interesting determination of

the size of molecules which does not depend upon the kinetic theory at all.

Regarding molecules as spheres which are perfect conductors of electricity*,

the dielectric capacity ^ of a gas which contains N molecules per cubic

centimetre is found to be given by

On assigning to N the value 2-75 x 10^'' it is possible to calculate a directly

K is known. When K is not known by direct experiment, we may assume

Maxwell's relation K= /j?, where fi is the refractive index for light as

compared with a vacuum. For a gas, K is very nearly equal to unity, so

that the relation becomes K=2fM — 1. In the following table many of the

values of K are calculated in this way.

It will be noticed that the value of \(r, obtained in this manner, is the

radius of the electrical structure of the atom, this being supposed for simplicity

* Mossotti's Hypothesis. See Maxwell, Elect, and Mag. (3rd edition), p. 70, or Jeans, Elect,

and Mag. (3rd edition), p. 130.
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Gas =^ (observed)
-n-o

Method*
Lower limit

to \a^ i<^. (p. 346)

Hydrogen

Helium

Carbon-monoxide ...

Ethylene

000264

0000724

000692

001385

000594

000588

000543

000568

000965

001082

001732

002346

001536

003382

000850

001378

E

E

E

E

E

E

0-92x10-8

0-60[

1-26

1-60

1-20

1-19

1-17

1-18

1-40

1-46

1-71

1-89

1-64

2-14

1-35

1-59

1-19x10-8

0-98

1-62

1-99

1-60

1-57

1-48

1-42

1-66

1-64

1-72

2-04

1-66

1-76

Nitrogen

Air

Oxygen

Argon

Carbon-dioxide

Nitrous oxide

Methyl chloride

Ethyl chloride

Chlorine

Benzene

Krypton

Xenon

to be spheriqal. The values obtained for \ar may accordingly be regarded as

lower limits for the quantity \c^ which we have already had under considera-

tion. The values obtained for this lower limit are given in the above table,

together with the values of \(t^ obtained on p. 346, for comparison.

It is satisfactory to find that these values of ^(x^ lie in every case between

the lower limit just obtained, and the upper limit obtained on p. 345.

The limits are in some cases quite wide, as for instance with helium, but it

must be remembered that we have arrived at the limits by assuming the

helium atom to be spherical, whereas it probably consists of three coplanar

electric charges. The widest limits occur for the gases of lowest molecular

weight, except for a tendency for monatomic gases to have wider limits than

others. This is seen from the following table, giving the ratio of the limits

for the various gases

:

Xe
1-5

N2O CO2, CH3CI, CaHfiCl, CI2, CeHe

1-6 1-4

it ineasurement of K. The values given are in

each case the mean of two determinations : Boltzmann, Wiener Sitzungsber. lxix. p. 795, and

KlemenCiC, Wiener Sitzungsber. xci. p. 712.

—Optical method, the value of K being calculated from the observed refractive index. The

values of Ai are taken from Cuthbertson and Metcalfe, Phil. Trans. 207, A (1907), p. 135, Travers,

Study of Gases, p. 296, and the Recueil de Constantes Physiques.

Gas: He Ar Kr
Ratio

:

3-3 1-7 1-6

Gas: H2 CO, C2H4, N2 O2

Ratio: 2-1 1-7 1-6

ETH0D8 : E—Electric method by di



CHAPTER XV

AEROSTATICS AND PLANETARY ATMOSPHERES

457. In the present chapter we shall apply the principles and results of

the kinetic theory to a discussion of problems connected with the atmosphere,

both of this and other planets. The problems dealt with consist of various

problems of aerostatics, and an investigation into the question of dissipation of

planetary atmospheres.

Aerostatics.

Atmosphere in Isothermal (Conductive) Equilibrium.

458. An atmosphere is essentially a mixture of gases of different kinds,

under the influence of a permanent field of force, namely that of gravitation.

The potential of this field of force at a height z above the surface of the

planet may be taken to be gz.

For the densities of the different kinds of gas at a height z, we now have,

from § 113, the equations

p=p^e-^^'"^' (895),

p' = p,'e-^^'^'^' (896).

These equations give the densities of the constituents of the atmosphere

at different heights, po, po, • • • clearly being the densities at the planet's surface.

We neglect variations in the value of g, and also the rotation of the planet.

These equations are independent in the sense that each is concerned with

one and only one of the different constituents of the atmosphere. The

equations therefore contain the mathematical expression of the law formu-

lated by Dalton for an atmosphere in isothermal equilibrium

:

An atmosphere in isothermal equilibrium may be regarded as the aggregate

of a number of atmospheres, onefor each constituent gas, the law of density in

each atmosphere being the same as if it alone was present.
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459. Considering, for simplicity, two constituents only, the ratio in

which they are mixed at any height z is seen to be

qz m - m'
P_^Po_^-2hgz(m~m')^Po^^-'-f—Ji-

^^q^^^
P po po

and numerical values can be obtained on inserting the values of Rjm, Rjni

from the table on p. 131.

For instance, if two kinds of gas are the oxygen and nitrogen in the

earth's atmosphere, we find that the index of the exponential becomes equal

to about 'Ol at a height of five kilometres. Thus the proportions of oxygen

and nitrogen would, on the suppositions we have made, change at the slow

rate of about one per cent, in every five kilometres.

Atmosphere in Adiahatic (Convective) Equilibrium.

460. The atmospheric distribution which has just been investigated, a

distribution in which the temperature is constant throughout, while the

density of each component gas falls off exponentially with the height above

the earth's surface, is the law which would undoubtedly become established if

the earth's atmosphere were left at rest for a sufficient time.

Under actual conditions, however, the earth's atmosphere is incessantly

being agitated by currents and storms, so that there is a continual mechanical

transference of air from one part of the atmosphere to another. From this

circumstance, coupled with the fact that the conduction of heat in gases is

very slow, it follows that the atmosphere is never permitted to assume the

equilibrium distribution which has just been discussed. As the density of

an element is changed by its enforced motion from one layer of the atmosphere

to another, the temperature also tends to change, but before the temperature

has adjusted itself by conduction to the temperature of its new surroundings

the element finds itself again moved away. Hence it happens that the factor

which determines the distribution of the atmosphere is not the equalisation

of temperature necessary to a permanent state, but is the condition that an

element of gas, on being moved from one place to another, shall take up the

requisite pressure and volume in its new position without any loss or gain of

heat by conduction taking place. The law connecting the pressure and

volume in the atmosphere must accordingly be the adiabatic law found

in § 262.

461. The general equation of equilibrium of the atmosphere is

f,
= -9P (898),

and if, in accordance with the adiabatic law, we write

p = kpy (899),
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we obtain kypy^^ = - gp (900).

The integral of this equation is

ky
(Poy-'-py-') = 9^ (901),7-1

where po is the density at z = 0. This is the law according to which the

density falls off with the height. Since by equation (899), T is proportional

to py~^, it follows that equation (901) can be expressed in the form

T —T— = a constant .,,(902),

where Tq is the temperature aX z=0. Thus the temperature decreases as we
move upwards in the atmosphere, the amount of decrease being proportional

to the height.

The process of diffusion, as well as that of conduction, being very slow in

gases, it follows that the constituent gases of an atmosphere in convective

equilibrium ought to occur in approximately the same proportion at all

heights. This is found by experiment to be true of the atmosphere of the

earth, Frankland* has found that the proportions of nitrogen and oxygen in

our atmosphere are the same for all altitudes up to 14,000 feet. As has

already been remarked, there would be a variation of about one per cent, at

this height in an atmosphere in conductive equilibrium.

On putting /? = in equation (901) we obtain

-^, '-)

from which it appears that there is a superior limit to the height of an

atmosphere in convective equilibrium. Since, by equation (899), p = kp^,

this limiting height may be written in the form

^"'^
..,(904),

9Po{y-^)

where po, p^ are the pressure and density at the earth's surface. Substituting

numerical values, this height is found to be about 29 kilometres.

Our atmosphere, then, if supposed to be in convective equilibrium

throughout, would have to be regarded as a layer of gas of uniform com-

position throughout, having a height of about 29 kilometres, the temperature

decreasing uniformly as we ascend.

On substituting numerical values, we find for the constant of the right-

hand of equation (902) a value of approximately 10° C, per kilometre. In

practice, however, the problem is one of extreme complexity, owing in part to

• * Journ. Cheni. Soc. xiii, p. 22.
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the irregularities of the earth's surface which prevent the surfaces of equal

temperature from being strictly spherical. It is found that this theoretical

estimate of the temperature gradient is only approximately confirmed by

observation, the observed value being more like 5° C. per kilometre*.

Detailed accounts of observations on this point will be found in Meteoro-

logical Reports f.

The Outer Atmosphere.

Outer Atmosphere in Conductive Equilibrium.

462. When we examine in detail the molecular mechanism by which the

adiabatic law is maintained in an atmosphere we find that there must be a

limit beyond which adiabatic equilibrium is impossible. For at the free

surface which is predicted from the supposition that the adiabatic law obtains

throughout, the density would be zero, and therefore the mean free path

infinite. Hence there would be molecules arriving at this surface from layers

of gas inside it, with finite velocities and infinitesimal probabilities of collision.

The majority of these molecules would of course pass outside the free surface

predicted by the simpler theory, in a manner somewhat similar to that in

which molecules escape from the free surface of a liquid and form a vapour.

These molecules would form what may be described as an " outer

"

atmosphere. In this atmosphere, the density is very small, so that collisions

are rare, and the majority of molecules will simply describe orbits under the

earth's gravitation, undisturbed by collisions, and will finally fall back again

into the " inner " or adiabatic atmosphere. This at any rate is true of those

molecules which start with velocities such that they describe elliptic orbits

under the earth's attraction. Others, starting with greater velocities, will

describe parabolic or hyperbolic orbits, and these may be regarded as lost

altogether to the earth's atmosphere. We shall return to the consideration

of these losses later.

463. A brief calculation will shew that the isothermal layer predicted by

these calculations would be expected to start only a few metres from what

would otherwise have been the outer limit of the atmosphere ; and so long as

we consider only the molecular mechanism of the atmosphere, there seems to

be no reason why the isothermal layer, should extend.further than this. The

question assumes a very different aspect when the radiation of the different

* See Dines, Phil. Trans. 211, A (1912), p. 253, or Gold, Proc. Roy. Soc. lxxxii. A (1909),

p. 43. The Comit€ mit^orologiquc international has adopted the rate of 1° per 200 metres for

reductions of temperature observations to sea level.

t See for example a discussion in the paper by Dines just referred to, or a general discussion

in the Report of the Chief of the U.S. Weather Bureau, 1900-1, ii. p. 25.
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layers of the atmosphere is taken into account. It is obvious that an
atmosphere in which the outer layers were at, or near to, the absolute zero of

temperature could not be in permanent equilibrium. For these outer layers,

being at this low temperature, would lose no heat by radiation, and would be
continually gaining heat by absorption of radiation from the warm inner

layers of the atmosphere. For any atmospheric arrangement to be permanent,

the radiation and absorption of each element must be equal.

The mathematical theory of an atmosphere in radiation equilibrium has

been worked out by Gold*. Regarding the atmosphere as consisting of two
shells, the inner in the adiabatic state, and the outer in the isothermal, it is

shewn that for an atmosphere of uniform constitution, the adiabatic state

could not extend to a height greater than that given hy p = ^p^, where p^ is

the surface pressure. When the atmosphere is not supposed to be uniform,

the height to which the adiabatic layer can extend is increased. Using an

approximate formula to represent the varying amounts of water-vapour at

different heights, it is shewn that the adiabatic layer must extend to a height

greater than that given by p = ^p^ (namely z = 5^ kilometres), but cannot

extend to a height greater than that given by p = ^p^^ (namely z = 10|

kilometres).

464. The existence of an isothermal layer above the adiabatic region of

the atmosphere has been amply confirmed by observation. The phenomenon
was first observed by M. Teisserenc de Bort, and was communicated to the

Societe Fran9aise de Physique in 1899f. The average height at which the

change begins was found to be about 11 kilometres, although ballon-sondes

going up near the equator have failed to find an isothermal layer although

going as high as 15 kilometres, and it is stated:]: that clouds have been

observed at a height as great as 17 miles or 27*4 kilometres.

The general result of Teisserenc de Bort has, however, been amply con-

firmed by other observers. In September 1906, the isothermal layer was

found over Milan at heights varying from 8 to 13 kilometres, and tempera-

tures between — 40° C. and — 65° C. Over Berlin in 1906 the height varied

from 10 to 13 kilometres, and the temperature from — 50° C. to — 65° C, with

an average of — 55°C. In England in 1907 the layer was found at heights

varying from 8 to 15 kilometres (average 11 km.), with temperatures varying

from - 30° C. to - 60° C. (average - 47° C.) The layer has also been found

over Paris, in America and in Lapland.

* "Tlie Isothermal Layer of the Atmosphere, and Atmospheric Radiation," Proc. Roy. Soc.

Lxxxii. A (1909), p. 43.

t This summary of the experimental evidence is largely taken from Gold's paper, already

referred to. See also Teisserenc de Bort, Comptes Rendus, 134 (April 1902), 138 (Jan. 1904),

and 145 (July 1907) and Dines, Phil. Trans. 211, A, pp. 268, 268.

X Dewar, Royal Instil. Proc. xvii. [1], p. 223.
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Often the phenomenon is found to be one of temperature-inversion, the

temperature reaching a minimum at the boundary of the two layers, and

increasing as the isothermal layer is further penetrated. In an observation

over Strassburg in 1905, the temperature recorded at 26 kilometres was

20° C. higher than that at 14 kilometres.

It appears probable that we shall obtain a fair approximation to average

conditions by assuming that the temperature is adiabatic up to a height of

lOJ kilometres, at which the pressure is \po, that at this point the tempera-

ture is — 53° C. (= 220° abs.), and that beyond this the atmosphere is in

isothermal equilibrium.

465. According to the simple theory of which the result is expressed by

equation (895), there can be no upper limit to the height of the outer

atmosphere in isothermal equilibrium, for the value of p, as given by this

equation, does not vanish at any finite height.

It must, however, be remembered that in arriving at equation (895), no

account was taken of the rotation of the planet, or of the variation of the

value of gravity at heights above the earth's surface. When there is found

to be no limit to the height of the atmosphere, the neglect of these disturbing

agencies becomes inadmissible.

For a planet rotating about the axis of z with angular velocity q>, the law

of distribution of density may be taken to be

p = ^e-2'"«^ (905),

where V= -^(o^{x^ -^ y'')-^— (906),

the term ^— representing the gravitational potential at a distance r from the

earth's centre. Thus the equation of the surfaces of equal density may be

taken to be

0)2 (a;2 + 2/2) + ?^- = constant (907).

The form of these surfaces was first studied by Edward Roche * ; a dis-

cussion of his results is given in a paper by Prof G. H. Bryan f. Sufficient

information for our present purpose will be obtained by examining the

distribution of density in the equatorial plane of the planet. Replacing

^ + 2/" by r^, we have in the equatorial plane

p = Ae I- '' -• (908).

• M€moires Acad. Sci. Montpellier.

i " The Kinetic Theory of Planetary Atmospheres," Phil. Trans. 196, A, p. 12.

J. G. 23
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Differentiating, we find that dpjdr vanishes when

«'^' = ^' (909).

There is therefore a single minimum of density, and the position of this

minimum is the same for each constituent atmosphere, being in fact the

series of points at which the apparent centrifugal force exactly balances the

gravitational attraction of the planet. As we pass outwards the density

decreases until this minimum is reached, and afterwards increases con-

tinually.

For our earth, Helmert's value for (o^ajg, the ratio of the apparent

centrifugal force to gravity at the equator, is ^_^ _^ , so that the minimum

of density ought to occur at a distance from the earth's centre given by

r = v^28&-38a = 6-607a.

At a point so far from the earth's surface as this, the density is so small

that it may be treated as insignificant.

Constitution of the Outer Atmosphere.

466. Throughout the whole of the outer atmosphere the law of dis-

tribution must be that expressed by equation (905). We can now carry

out calculations similar to those of § 459, but having reference to the outer

atmosphere. It will not be found necessary to carry these calculations to

a height above the earth's surface so great that the rotational term becomes

of any importance.

At a height z above the surface of the planet, the value of V is

r a-\- z'

so that equation (905) becomes

2hmqa [
|

p = Ae V+^J,

Also po, the value of p at the lower boundary of the outer atmosphere, is

given by

po = Ae^^'^'J"",

since we may neglect the thickness of the inner (convective) atmosphere in

comparison with the earth's radius.

The elimination of A leads to

- 2hmqa I )

p=^Poe
Va+.;

(910^.

Also at the inner surface the proportion in which the different con-

stituents occur is the same as throughout the inner atmosphere, and

therefore the same as at the earth's surface.
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467. The following table gives the constitution by volume of the

atmosphere at the earth's surface:

Hydrogen* about 1 in 100,000

Helium t 1 „ 250,000

Neonf 1 „ 80,000

Nitrogen 78-06 „ 100

Oxygen 21-00 „ 100

Argon+ 0-93 to 0-95 „ 100

Krypton§ 1 „ 2,000,000

Xenon§ 1 „ 17,000,000

Traces of Carbon-dioxide and Ammonia are also present in the atmo-

sphere in varying quantities.

We can now study the way in which the composition of the upper

atmosphere varies at different heights by a use of formula (910). The

density at the bottom of the outer atmosphere must be a matter of

uncertainty, but as a rough and convenient approximation, let us suppose

that it corresponds to 10^' molecules per cubic centimetre. The number

of molecules of different kinds at this level can be at once deduced from

the table just given, and then, from formula (910), we can calculate the

following table
II,

giving the number of molecules per cubic centimetre at

different heights in the isothermal atmosphere. The table is calculated for

the assumed temperature T= — 53° C. = 220° absolute, and z is measured

from the top of the adiabatic atmosphere assumed to be at lO'o kilometres

above sea level.

The table shews at a glance how the heavier gases tend to sink to the

bottom of the isothermal atmosphere, while the lighter ones rise to the top.

As we ascend in the outer atmosphere, the proportion of any light to any

heavier constituent gas must continually increase, so that the proportion

of a light gas, however rare at the bottom, must necessarily exceed that of all

heavier gases after a sufficient height.

* Dewar, I.e. ante. Claude, Comptes Rendus, 148 (1909), p. 1454, gives the proportion as

less than 1 in 1,000,000 by weight : the Recueil de Constantes Physiques gives 1 in 10,000 by

volume. Lord Rayleigh (Phil. Mag. in. (1902), p. 416) gives less than 1 in 30,000 by

volume. Some authorities believe that there is no appreciable amount of free hydrogen in the

atmosphere.

t W. Ramsay, Proc. Roy. Soc. lxxx. (1908), p. 599.

t Moissan, Comptes Rendus, 137, p. 600.

§ W. Ramsay, Proc. Roy. Soc. lxxi. (1903), p.. 421, and lxxx. (1908), p. 599.

II
This table is from a paper by the present writer {Bull, of the Mount Weather Observatory,

II. [6] (1910)). A similar table was first given by Hann in 1903 (Meteorolog. Zeitschrift (1903),

p. 122), and will be found reproduced in the Recueil de Constantes Physiques, p. 688. See also

Humphreys, Bxdl. of the Mount Weather Observatory, ii. [2] (1910), and Wegener, Phys.

Zeitschrift, xii. (1911), p. 170.

23—2
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Number of molecules per cubic centimetre

in the outer atmosphere.

Gas
Molecular
weight

Number of molecules per c.c. at height z (in kilometres)

2 = 2 = 20 2 = 80 2 = 160 2 = 800

Hydrogen... 2 10x1013 8x1013 430x10" 182 X 10" 3x1010

Helium 4 4x1013 2-6x1013 73x10" 13x10" 106

Neon 20 12-5x1013 1-4x1013 0-3x10" 0-5 xlO^

Nitrogen ... 28 780,600xlO»3 42,900x1013 520x10" 35x107

Oxygen 32 210,000x1013 7,000x1013 25x10" 0-3x107

Argon 40 9,400x1013 139xU)i3 0-04x10" 102

Krypton ... 83 0-5 X 1013 109

Xenon 130 0-06x1013 105

Total 101" 5 X 1017 1011 2x1013 3x1010

For instance hydrogen passes nitrogen and all other gases at about

85 kilometres up, at 100 kilometres hydrogen forms 90 per cent, of the

whole atmosphere, and at 800 kilometres practically the whole atmosphere

is hydrogen.

The proportion of helium nowhere attains to any great value. At about

95 kilometres, helium exceeds nitrogen in amount, but is itself already

exceeded about eight-fold by hydrogen.

The three remaining monatomic gases are all heavier than air, and so

nowhere exceed the small proportions which they contribute at the base

Collisions in the outer atmosphere.

468. At a height of 800 kilometres, the atmosphere is practically all

hydrogen. The value of v here is about 8 x lO", and assuming a molecular

diameter cr = 2*7 x 10~^ we find a free path of about 100 metres. At this

height, then, molecular collisions are still comparatively frequent.

At a height equal to four times this, the density is reduced by about

10~®, and the free path is accordingly about 100,000 kilometres. Thus it

appears that at this height the chance of collision for a molecule is

practically negligible, and the atmosphere may be supposed to consist

of molecules in free flight, undisturbed by collisions. It will be noticed

that even at this height there are still about 30,000 molecules per cubic

centimetre.
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When the free path of a molecule is sufficiently short, it may be regarded

as a straight line, but the molecules we are now considering are in flight for

so long that gravity will produce a very appreciable curvature of their paths.

The paths of some of these molecules will be approximately parabolic, the

molecules behaving like projectiles discharged at their last collision. Others

may rise to such heights that the variations in the value of gravity become

perceptible, and their orbits must be treated as ellipses : these molecules,

while in flight, form in effect a series of infinitesimal satellites to the earth.

A small minority of the molecules, which happen to have acquired very high

velocities by a series of unusually violent collisions, will describe hyperbolic

orbits, and unless they meet with another collision, will be lost to the earth's

atmosphere for ever.

In this way we see that there must be a continual loss to the atmospheres

both of the earth and of other planets. The amount of this loss we may now

try to estimate.

The Rate of Loss of Planetary Atmospheres.

469. Imagine a sphere of radius R drawn in the earth's atmosphere

concentric with the earth's surface, this sphere being of such radius that

collisions outside it are very infrequent, but the radius being left otherwise

undetermined for the present.

The gravitational potential at the surface of this sphere will be ga^jR,

so that a molecule arriving at the sphere with a velocity c will describe an

elliptic or a hyperbolic orbit according as c'^ < or > 2ga^lR.

The number of molecules which cross unit area of this sphere in an

outward direction in unit time with a velocity greater than ^2ga^/R will be

j^ff^y ffjg-hm(u^ + v^ +w^)^^^^y^^
(911),

where v is the density of molecules at the sphere r = R, w is the component

of velocity normal to the sphere, and the integration is taken for all values

of u, V, w which are such that w is positive, and

^gd"
V? ->t ifi + w"" > R

Each molecule counted in expression (911) is describing a hyperbolic

orbit, and if the value of R is supposed so great that collisions outside the

sphere of radius R are very infrequent, then each of these molecules may be

supposed to be permanently lost to the earth's atmosphere.

To integrate expression (911) put

u = c sin 6 cos <^, v = c sin 6 sin ^, w = c cos 6,
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then the limits of integration are from ^ = to ^ir, from ^ = to 27r, and

from c= '^2ga^/R to oo . We find for the value of expression (911),

^'^^ 'c=j2^IR 2V7r/im V BJ
As in equation (910), we may take the value of v to be

oi. R-a— 2hmga—=-—

v = Voe ' ^ (912),

where Vo is the molecular density at the base of the isothermal atmosphere.

On substituting this value for v, we obtain for the loss per unit area per unit

time over the sphere of radius R,

^o_^-2;.m,aA+/,^2^^\
^c)lS).

I^lirhm V R } ^ ^

Comparing this with formula (354), we may notice that the loss is

exactly what it would be if gas from the base of the isothermal layer were

streaming freely into space, without any resistance, through a series of orifices

of total area equal to

times the area of the sphere of radius R.

470. The expression obtained in this way is not independent of R, as we
might at first have expected it to be. The reason for this is as follows. In

the complete atmosphere, supposing it to be constituted according to the law

expressing the steady state throughout, there will be a number of molecules

describing orbits which never pass within a sufficiently small distance from

the earth's centre for the chance of collision to be appreciable. Some of

these describe hyperbolic or parabolic orbits, travelling from infinity past the

earth to infinity again without collision. Now if jo is the distance of the apse

of any orbit from the earth's centre, it is clear that a molecule describing

this orbit will be counted in expression (913) as escaping from the earth's

atmosphere if i^ >^, but not ii R<'p. We should therefore expect expression

(913) to increase with R, as is in fact seen to be the case.

It is questionable whether molecules of the kind just considered ought to

be supposed to exist in the actual atmosphere. The analysis by which the

specification of the steady state is arrived at takes no account of the length

of time required for the establishment of this steady state. In the present

instance the steady state implies the arrival of molecules which have

described hyperbolic and parabolic orbits from infinity. It is therefore

obvious that it will require infinite time to establish such a steady state.

On the other hand, molecules which are supposed to describe orbits

in the regions in which no collisions occur have no influence on the rest of

the atmosphere and may therefore be removed without disturbing the
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equilibrium of the remainder of the atmosphere. In nature these molecules

cannot be supposed to exist. They would be counted in our estimate of the

escape of molecules from the atmosphere by taking R great. We shall

therefore obtain the most accurate results by taking R as small as possible,

and the error would vanish altogether if Ave could reduce the sphere of

radius R to such a size that collisions might be regarded as frequent

everywhere inside it.

This we are prohibited from doing, because we have already supposed R
to be so great that collisions outside the sphere of radius R are very

infrequent. It must, nevertheless, be noticed that the order of magnitude

of expression (913) is determined solely by the exponential e-2/"ni7a^ gQ ^j^at

the value of Ihmga determines whether the escape of molecules is appreciable

or not. This criterion, as we should expect, is independent of R.

In the case of a rotating atmosphere, we found that there must be

supposed to be a complete atmosphere extending to infinity, lying outside

the region in which practically no collisions occur. This atmosphere can

be treated in the same way in which individual molecules coming from

infinity have been treated. It can be supposed to be removed bodily without

disturbing the equilibrium of the remainder of the atmosphere.

471. Formula (913) gives the number of molecules which are lost per

unit area per unit time from the earth's atmosphere, Vq being the number of

molecules per unit volume at the base of the isothermal layer. Hence the

time required for the earth to lose an amount equal to a layer one centimetre

thick of the gas in question at the base of its isothermal atmosphere will be

U = ^
—

E^, ^775 6^ ^" seconds (914).

For the earth, the actual mean radius is 6370 km,, the radius of the base

of the isothermal atmosphere is about 6380 km., while we hav6 seen that R
can certainly be taken to be less than (6380 + 3200) km., or about \a. We
are only concerned with the evaluation of 4 as regards order of magnitude,

and to this degree of accuracy the distinction between R and a may be

disregarded, both for the earth and the other planets. Putting R/a = l,

and replacing 2hm by its value 3/C^ formula (914) becomes approximately

1^1 eC^ seconds ^915).

Imagine that the total amount of gas of the kind under consideration is

equal to that in a layer of thickness H and density equal to that of this gas

at the base of the isothermal layer. At this base, the partial pressure of the

gas in question must be approximately v^mgH, and is also equal to ^VomC^.

Thus the value of H must be approximately ^C'^/g, and the time ^i required
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for the whole outer atmosphere to stream away, if its present rate of loss

were kept up, would be
Qi 1-45(7 ^^'^

^i
= :tr-^o = —-eG' seconds (916).

For the earth, a = 6-37 x lO^ cms., g = 981, so that ga = 6-36 x 10". The
value of C for hydrogen at — 53° C, the temperature we have assumed for the

isothermal atmosphere of the earth, is 1"65 x 10®, so that

|? = 70-0 (917).

Hence we find that for hydrogen in the earth's atmosphere, ^ = 9*4 x 10^

seconds or about 3 x 10^'^ years, while t^ is about 2*8 x lO'-'* years. This

represents a quite inappreciable rate of dissipation, even when measured

by astronomical standards.

472. It must, however, be noticed that formulae (915) and (916) are

very sensitive to variations in temperature, owing to the presence of the

exponential factor. If we had assumed a temperature of 550° abs. (277° C.)

instead of one of — 53° C. for the earth's isothermal atmosphere, the value of

C^ would be 2^ times its former value, and the index of the exponential

(cf equation (917)) would be 28 in place of 70, giving values of ^o and t^

about e~*^ or 10~^^ times those found above. The actual value of t^ is now
about 10 million years, and this would represent appreciable dissipation on

the astronomical scale of time.

It accordingly seems certain that at present our atmosphere is retaining

its hydrogen, and a fortiori all the heavier gases, but the loss of a hydrogen

atmosphere is readily understood if we are at liberty to contemplate an epoch

of time in which the temperature of the outer atmosphere was greater than

about 277° C.

473. Whenever a constituent of an atmosphere is still in existence, the

values of t^ and ty must be of astronomical orders of magnitude, so that the

index Sga/C'^ must be a fairly large number. Thus we may, to within our

present accuracy, neglect unity in comparison with this number in formulae

(915) and (916), and replace them by the approximate formulae

t,=.'^^ec\ t, = ^eC' (918).
ga 2g^a ^ '

The applicability of these formulae is naturally not limited to the earth.

The masses and radii of the other planets and their satellites are known with

fair accuracy. From these g can be estimated, and hence we obtain, for any

planet, a relation between t-^, the time of dissipation, and C, the velocity of

molecules of any kind in the atmosphere of the planet. In the following table

are given the values of M, a and g for various members of the solar system.
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In the last three columns are given the values of G which correspond to

ti = 1000 years, t, = 1,000,000 years and t^, = 1000 million years. These times

may roughly be supposed to represent astronomically rapid, moderate and

imperceptible dissipation respectively.

Planet
Mass

(Earth= 1)

Radius
(Earth= 1)

Gravity at

surface

(Earth = I)

Value of molecular velocity C

ti = 1000 years ti = 10* years ti = 109 years

Sun 333,432 109-05 27-9 1-6x10^ 1-4x10^ 1-3x107

Mercury 0-056 0-37 0-41 1-1x105 1-1 X 105 0-9 X 105

Venus 0-817

1-000

0-012

0-966

1-000

0-273

0-88

1-000

0-165

2-7 X 105

2-9x105

6-1x10*

2-4x105

2-6x105

5-4 X 10*

2-1x105

Earth 2-3 x 105

Moon 4-8 X 10*

Mars 0-108

318

0-005

0-54

11-14

0-31

0-37

2-53

0-05

1-3x105

l-6xl0«

4x10*

1-2x105

1-4 X 10«

3x10*

1-0x105

Jupiter 1-2 X 106

Sat. I 3x10*

Sat. II 0-007 0-28 009 5x10* 4x10* 4x10*

Sat. Ill ... 0-028 0-47 0-13 7x10* 6x10* 6x10*

Sat. IV ... 0-013 0-40 008 5x10* 5x10* 4x10*

Saturn 95-22

0-02

9-4

0-37

1-06

0-14

9-0x105

7x10*

8-1x105

6x10*

7-1 X 105

Titan 6x10*

Uranus 14-58

17-26

4-0

4-3

0-92

0-95

5-6x105

5-8x105

4-9 X 105

5-1 X 105

4-4 X 105

Neptune 4-6 X 105

This table ought to be used in conjunction with one such as the following,

which gives the values of C at various temperatures for different possible

constituents of planetary atmospheres:

Values of C at different temperatures.

Gas

Temperature

- 100° C. 0° C. 300° C.

Hydrogen 1-47x105

1-04x105

4-9 X 10*

3-9 X 10*

3-7 X 10*

3-3 X 10*

3-1 X 10*

1-84x105 1
2-66x105

1-31X-105 1-90x105

6-1x10* 8-8x10*

4-9 X 10* 7-1 X 10*

4-6 X 10*
- 6-7 X 10*

4-1 X 10* 5-9 X 10*

3-9x10* 1 5-7x10*

Helium

Water-vapour

Nitrogen

Oxveen

Argon

Carbon-dioxide
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474. The predictions of the Kinetic Theory appear to be in accord-

ance with the facts in every instance. The tables explain at once

the existence of atmospheres on Venus, the earth, and all the superior

planets.

Theory would lead us to expect an atmosphere on Venus very similar in

composition to that on our earth. There appears to be quite conclusive

evidence that an atmosphere of some sort exists on Venus, although it

has not yet been found possible to determine its constitution. What
evidence is available is interpreted by H. N. Russell as shewing that

the atmosphere of Venus is so permeated with particles of vapour as to

be translucent rather than transparent, and this leaves the question of

constitution unsolved.

Mars ought to retain water-vapour and all heavier gases with certainty,

but the retention of helium must remain open to question in our present

ignorance of the Martian temperature, while hydrogen could not possibly be

retained. Lowell and Slipher claim to have found spectroscopic evidence

of the existence of water-vapour on Mars, while Campbell argues from

the smallness of atmospheric absorption that the atmosphere of Mars
cannot at most have a density as great as a quarter of that of our own
atmosphere.

Jupiter, Saturn, Uranus and Neptune ought clearly to retain all con-

stituents of their atmospheres, including hydrogen. Not only this, but

these planets ought to have retained hydrogen even if, in the past, their

atmospheres had been at temperatures about ten times as great as those

which we must now assign to them. Spectroscopic evidence indicates that

all of these planets have very dense atmospheres, in which hydrogen is

almost certainly a prominent constituent.

The critical molecular velocities for the moon are about a fifth of those

for the earth, so that, if the temperature conditions had always been the

same as for the earth, the moon ought to have retained gases having

molecular weights equal to 25 times those retained by the earth. But
any atmosphere of this kind on the moon must probably have been very

thin, and the resulting high temperatures on the illuminated side of the

moon would probably soon result in a loss of whatever atmosphere there was.

An atmosphere has been observed on Titan, for which the critical velocities

are about the same as for the moon, but this is explicable in view of its

greater distance from the sun, and the same consideration is probably

adequate to account for the suspected atmospheres on two of Jupiter's

satellites. Mercury is believed to be devoid of atmosphere, although its

critical velocities are higher than those for any of these satellites. The
high temperature resulting from its proximity to the sun provides an

adequate explanation.
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Free electrons have such high velocities that they ought to escape freely

from everything, including the sun. If this occurred the sun and all the

planets would have become positively charged until a state of electrical

equilibrium was obtained, in which planets and satellites with varying

positive charges of electricity moved through a space which was nega-

tively charged by the presence of free electrons. This possibility leads to

interesting fields of speculation, but there is as yet no evidence that

anything of the kind happens to any great extent.



CHAPTER XVI

THE TRANSFER OF ENERGY AND THE PROPAGATION OF SOUND

475. With a few exceptions, the molecule has so far been regarded as a

rigid mass, and the difficulties which centre round the problem of its internal

energy have been avoided by making simple hypotheses, such for instance as

that of § 261, in which it was assumed that the internal energy of every

molecule was on the average always equal to yQ times the translational energy.

In the present chapter we shall consider some phenomena which depend

on the internal structure of the molecule. It seems probable that these

questions cannot be adequately discussed until the dynamical scheme which

is embodied in the classical mechanics has been supplemented by the new

conceptions of the quantum-theory, but it is natural and convenient to begin

by considering what results can be obtained from the classical dynamics

alone.

The Transfer of Energy.

The vibrations set up hy collisions.

476. Let us first suppose that the molecule has certain possibilities of

internal vibration, and let these be represented by supposing the energy

function to contain terms of the form

2L = a.cjji' + a,(l>,'

+

(919),

2V=b^<f>,^ + b,(f>,'+ (920),

in which the as and b's are constants.

So long as the molecule is describing an undisturbed free path, the

changes in its coordinates will be deducible from its own energy-function, so

that the variation of any coordinate
<f>

is given by an equation of the form

a$-[-6</) = (921),

of which the solution is

(f)
= A cos pt + B sin pt (922),

in which A , B are arbitrary constants and p is such that ap^ = b.

Suppose, however, that at time ^ = the motion of this molecule is

disturbed by an encounter with another molecule, lasting until time t = T.
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The influence of this encounter upon the first molecule may be represented

by a force-function of the form

and, during the time of the encounter, the equation giving the changes of
<f>

will not be equation (921), but will be

aij> + p'a(i> = U (923).

Before the time ^ = 0, the coordinate cf) is describing the free harmonic

vibration expressed by equation (922). The impulse Udt acting from t = to

t = dt, sets up an additional free vibration of initial displacement zero and

velocity ; the displacement of this additional vibration at any subsequent

time is therefore sinjs^. Compounding all these vibrations with the

original vibration expressed by equation (922), we obtain, for the displace-

ment ^ at any instant subsequent to t = T, the well-known solution*

t'= T

<f>
= Acospt + Bsmpt +—

I
Ut^t' sinp(t-t')dt' (924).

477. Let us write

X =— ( Ut^t' cos pt'dt'
ap J

t' =

t'= T

t =0

y .(925),

Y=— ! Ut^t' sin pt'dt'
ap '

-^

80 that
t'=o

t'= T

X + iY=-^
ap

Ut=t'e^^^'dt' .(926),

t' = Q

then equation (924) assumes the form

<\> = {A-Y)cospt + {B + X)%inpt (927).

The energy of vibration is

^{a^^ + b<\y') = ^h\{A-Yf + {B + Xf'\ (928).

This may be written in the form

^h{A^^-B^) + h{BX-AY) + h^h{X'+Y^) (929),

in which the first term represents what would have been the energy of

vibration had the encounter not taken place, and the two remaining terms

represent the transfer of energy effected by the encounter.

* Bayleigh, Theory of Sound, i. § 66.
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At. the beginning of the encounter ^ is given by putting ^ = in

equation (922), so that <^ = A, (f)=pB. On averaging over all the molecules

of the gas these quantities rnay be supposed to be equally likely to be

positive as negative, so that on averaging over all encounters we find that

the mean value of BX —AY may be taken to be zero. Hence from ex-

pression (929), the increment in the energy of the
<f)

coordinates which

occurs throughout the whole gas, is the same as if the increase, in the case

of each single molecule such as we have just been considering, were

^b{X'+Y^) (930).

478. This quantity must be evaluated from equation (926). The form

of the function U is, however, almost entirely unknown. We are therefore

compelled to examine the general properties of the functions X and Y defined

by equations (925), making as few assumptions about the function U as

we can.

A good deal can be learned from a graphical treatment. In fig. 25, let

the thick line be the graph of the function U, regarded as a function of the

time, then the thin curve will be the graph of the function U cos pt, and the

y^
/

' R
r ^^M

1 /
Vn^<^

X,
Q S

/ y--

Fig. 25.

value ofX is equal to the area of this curve, estimated algebraically, divided

by ap. The area of this curve can, however, be regarded as made up of the

areas A,B...P,Q,R,S,T..., and of these the alternate areas, say B ...Q,8...,

must be estimated negatively. Thus if we denote the numerical magnitudes

of the areas by the corresponding letters, we have

apX=^A-B+G+...-^P-Q + R-S+T-..,
= i[J.+(^~25+C) + (C-2/)-f-^)+...

+ (P-2Q + i^) + (i2-2>S+T) + ...].

It is at once clear that each term in this sum is very small; Q is nearly

the arithmetic mean between P and R, and so on, and the two isolated

terms at the beginning and end are clearly seen to be small on reference to

the figure. It is therefore obvious that X is very small : to see clearly how

small, we must have recourse to more exact analysis.
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479. Let fig. 26 represent a plane in which all values of t', real and

imaginary, are represented, and let AOB be the axis along which if is real,

being the point t' = 0. If P represents the point

t' = Re^^= R (cos e + i sin d),

then the angle FOB will be equal to 6, and OP will be equal to R.

By Cauchy's theorem of contour integration,

jf(t')dt' = 2i7rtZ (931),

where the integral is taken round any closed contour in the plane of fig. 26,

and 2^ is the sum of the residues oif(t') inside this contour. Let us take

f(t') = Ue^P^', and take the closed contour to consist of a semicircle BPA of

radius R described about the origin as centre, and the real axis AOB which

forms the bounding diameter of the semicircle.

In the limit we shall take R = cc. The real axis AOB will then extend

from — 00 to + 00 so that the integral of Ue^P^' taken along this real axis

may be supposed equal to the integral taken through the encounter, and

therefore, by equation (926), to ap{X + iY).

The remainder of the left-hand member of equation (931), the integral

being taken round the prescribed contour, is the integral taken round the

semicircle BPA, over which R is constant and infinite, while 6 varies from

to TT. On this part of the path, t' = Re^^, so that

dt'^Re'^idd, and ^^K = 6^^^(008^+^8111^).

Denoting this part of the integral by /, we have

1= j U'e'P^''°^^-P^^'''^Re'^de,

and the original equation (931) assumes the form

ap{X + iY) + I^2iTrlZ (932).
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To evaluate /, we divide it into three parts ij, I^ and /g, the first being

the integral from ^ = to 6 = €, the second from ^ = e to 6 = it — e, and the

last from ^ = 7r — eto^ = 7r. The integrand can be written in the form

U' [i cos id +pR cos 6) - sin (6 +pR sin 6)} e'P^
sin ^ + log R

_ _ j^^^^y

Let us choose the quantity e so that e shall be vanishingly small, whilst

R sin e shall be infinitely great in comparison with log R, this being always

possible when R is infinite (e.g. we may take 6 = R ' ^ so that R sin e = R^).

Giving 6 such a value, it is clear that g-i'^sin^ + logii
^j^^ vanish from d = €

to 6 = ir — e and therefore, except in the special case in which U' becomes

infinite within the range in question, we shall have /g = 0.

The cases in which U' becomes infinite within the range of integration

must, however, be examined. It is clear that if, when R=oo, U becomes

infinite less rapidly than an exponential e"^, then by taking R sufficiently

great, the integrand (933) will always vanish. When U becomes infinite

with the same rapidity as an exponential this is not in general true, and

the same is the case if U becomes infinite more rapidly than an exponential.

The important case in which the result is not true is that in which U
contains a term of the form cos (qt + a), which gives rise upon the semicircle

to terms containing the factors g^i^^^^^^^ If q<p, the result /2 = will be

seen to be true ; if q>p the result Jg = is not true, but the main proposition

can be proved by a slight modification of the present proof; it q=p the main

proposition is obviously not true. On general principles it will be seen that

this last is the only important case of exception. Physically, this possibility

represents vibrations " forced " in one molecule by vibrations of equal period

in the second molecule. These vibrations, then, form an exception to the

proposition which we are trying to prove, that the vibrations excited by

collision are small in comparison with the energy of the exciting agency

;

but the physical deduction we wish to draw from this proposition will be in

no way invalidated, for the setting up of vibrations of the kind in question

would not represent a transfer of energy between translational and vibratory

degrees of freedom, but only between two degrees of freedom of the same

type. The mean energies of the various degrees of freedom would, therefore,

not be affected.

Beyond this, however, it is impossible to discuss cases in detail : that the

result is in general true there can be little doubt. We therefore suppose

that I2 = 0, and proceed to the calculation of 7i and I3.

In evaluating I^, d< e and is therefore vanishingly small. Thus

/,= 1 U'e'^^P^ + ^K-P^UdiRe).

e=o

In this the factor e~P d {Rd) may be replaced by where u = e~P and
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the limits of integration, regarded as an integration with respect to u, are

u = \ to w = 0. Also, since U' = when ^ = 0, U' may in general be replaced

by 6 { --^TT ) , so that
•^ \dd /(,=o

J \dd Jg = o pP
11=

and this, in general, vanishes through the factor 6. In a similar way it can

be seen that I3 vanishes, so that / = 0.

Equation (932) now becomes
9?VX +iY=—l.Z (934).
ap

480. Let the residues of the function U which occur inside the infinite

semicircle which has formed the path of integration be ^1 at cti + i^i, ^2 at.

Og + i/Sa, etc., in which a, /3 are in every case real, and in which, since the

residues lie within the semicircle, ^ must in every case be positive. Then

the residues of the function Ue'^^' will be ^,e*^ («i + ^^i) at a^ + i0„ etc. These

are the quantities of which the sum has been denoted by XZ, so that

equation (934) becomes

X + iY=—t^^e'P'''e-P^ (935).
ap

We now proceed to study the variation of this quantity with p when p is

very great. Let us imagine the molecule to change so that, although its

configuration in equilibrium remains unaltered, the forces of restitution when

it is disturbed are altered, and consequently the value of p is altered. We
shall suppose the purely geometrical coordinates <^i, ^2 ••• to remain unaltered,

and hence a^, a^ ... and the forces U^, U^ ... remain unaltered. Since

[/"i, C/2 ... remain unaltered with a change of p, it follows that ^1, a^ and ^^

in equation (935) remain unaltered. If /3i is the smallest of the quantities

/9i, /Sj--- it appears that when p is very great the term with suffix 1 will

be the preponderating term in the sum on the right-hand of equation (935).

We may accordingly write the equation in the form

X + iY^— ^.e-'P^^-P^^ (936),
ap

whence it follows at once that

X' + Y' = ^Ai;,\'e-^P^^ (937).

Since ap^=b, it follows that expression (930), which gives the mean increase

of the energy of vibration, becomes

i6(Z^ + F«) =— l^il^e-^^i (938),

J. G. 24
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and the right-hand member depends on p only through the factor e ~ ^^^K It

therefore appears that, subject to the assumptions we have made, the energy

of the vibrations set up in the molecules decreases exponentially with p-.

This immediately shews what an enormous range of values is possible for the

rate at which the translational motion becomes dissipated through these

vibrations. For instance, the two values of the expression given by equation

(938) which correspond to pfii = 200 and p^i = 100 stand in the ratio e~^, or

about 10-««.

481. To determine the value of /Sj we should require to have full know-

ledge of the forces which come into play at an encounter of molecules. This

is beyond our reach, but we can arrive at an estimate of the order of magnitude

of ;Si which, although not exact, is sufficient for our purpose.

Let us begin by considering a collision between two elastic spheres. In

this case the forces may be supposed to act instantaneously. We do not

require to know the variations in the magnitude of the force-function (923)

which occur throughout the collision : all that matters is its value integrated

throughout the collision. We shall therefore get accurate results by assigning

to this force-function any form which is such that the collision is instantaneous,

and that its value integrated through the collision has a certain given value.

Suppose, for instance, that 1 Udt, where the integral is taken through a

collision which occurs at time ^ = 0, has to be equal to /. Then we may
take

^=;r(3^, («««>-

provided we put c = in the limit. For this value is such that U vanishes

except when ^ = 0, and

dt = I (940).
/; TT (C' + f)

In this case U, regarded as a function of the complex variable t', has two

infinities occurring at ^ = ic, — ic, and each of residue + Ijliir. Hence there

is only one infinity t = ic, occurring within the contour of integration in

fig. 26, and for this ^ = c. The right-hand member of equation (938) is

therefore

. .•^. ^e-^P" (941).

Putting c=0 we notice that the expression becomes independent ofp. This

is as it should be ; when the collision is instantaneous, the forces of restitution

in the molecule do not hav£ time to come into play, and therefore do not

affect the result of the collision.
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Taking c small, but not quite zero, equation (939) can be supposed to

represent the value of U for an encounter which is not quite instantaneous.

Here U vanishes except through a small interval of time comparable with c

and occurring when < = 0. The effect on expression (941) of taking c small

instead of zero, is to decrease it in the ratio e"^*'', and the forces of restitution

now come into play. The quantity ^ which in this case is equal to c is, as

we have seen, comparable with the time through which an encounter lasts.

It will be seen that the interpretation of /3 which has been obtained in this

special case will hold in every case as regards order of magnitude, and hence

we conclude that the transfer of energy to the vibrational degrees of freedom

of a gas may reasonably be expected to be slow, provided that the product of

the time occupied by a collision and the frequency of vibration is small.

The physical principle upon which this result rests would of course have

been obvious enough without a mathematical discussion. What would not

have been obvious is the extreme rapidity with which the rate of dissipation

decreases as p is increased.

482. Before we can determine the extent to which this principle applies

to a gas, we must form an estimate of the duration of a collision. For an

average molecule the effective diameter will be about 3 x 10~* cms. (see

p. 341), so that this may be supposed to be the distance apart of the

centres of the two molecules at their closest approach. The force between

them may, taking an average value, be supposed to fall off as the eighth

power of the distance, and so will, at a distance of 3"5 x 10~^ cms., be

equal to "291 times that at the distance of closest approach. The acute

stage of the collision may then, for a rough calculation, be supposed to

extend from a distance 3*5 x 10~^ cms. to a distance 3 x 10~^ cms. If the

molecules had initially a relative velocity V, this acute part of the collision

may be supposed described with an average relative velocity ^ F, and so we
obtain for the time of the half-collision about 10~7'^ seconds. This may be

taken to be the value of ^, at least as regards order of magnitude.

The exponential factor in formula (938) now becomes

a-^xio-^i'/^
(942),

and this gives an approximation to the extent to which the transfer of energy

at a collision is diminished by the presence of the field of force surrounding

a molecule.

483. Consider first vibrations having the frequency of light-vibrations.

Taking ^ = 3x 10'' as an average value for p, and F=10' as an average

relative velocity in a collision between two molecules, the exponential factor

(942) becomes e''^ or 10-^**. Thus the field of force surrounding the mole-

cules will act as an almost perfect cushion to shield the internal vibrations of

24 2
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the frequency we have been considering from agitation at collisions. With
10^" collisions per molecule, it would require about 10^^" seconds or 10^*^'^

years for internal vibrations to be established by collisions of relative

velocity 10^

The collisions which are effective in setting up vibrations will be those

for which the exponential (942) is comparable with unity. To set up vibra-

tions of frequency such that ^ = 3 x 10^^, the value of V must clearly be of

the order of 10'' cms. per second. The relative velocity of collision between

a free electron and a molecule is, even at ordinary temperatures, of this order

of magnitude, so that we might reasonably expect that light-vibrations

would be set up whenever the molecules were subject to bombardment by

free electrons.

As regards ordinary molecular collisions, it appears from § 33 (formulae

(52) and (53)) that the fraction of all collisions for which V lies between V
and F+t^F is

Integrating from F = Fo to F= oo , we find that the fraction for which F
is greater than Vq will be

e-^^'^^o^l+Lh^Vo^) (943).

The number of collisions for which the relative velocity is greater than

10'' will be obtained on putting Fo= 10^ in this formula, and, as we have seen,

these collisions may be supposed to be effective in setting up internal

vibrations in the molecules.

As an average value at ordinary temperatures, we may take

hm = 3/2(7^ = 6 X IQ-i".

The index —^hmVo^ in formula (943) is now seen to be equal to about

— 30,000, so that the number of collisions which, at ordinary temperatures,

are intense enough to excite internal vibrations, must be quite inappreciable.

Thus on the theory of the mechanism of radiation which we are now

considering, neither the great number of ordinary collisions, nor the small

number of very violent collisions, will have the slightest effect in producing

light-vibrations. These vibrations remain almost perfectly shielded by the

fields of force surrounding the molecules, and their energy remains permanently

zero, in spite of the theorem of equipartition of energy, any small amount of

energy they may acquire being dissipated in the form of radiation before new

energy is received. This of course is in accordance with observation, although

whether the suggested explanation we have given is the true one opens up

quite another question. It may be that the mechanism of radiation is very

different from that we have imagined.
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484. According to the theory which has been sketched out, light-vibra-

tions could be produced by collisions, but only at temperatures such that

hm V^ in formula (943) is comparable with unity

—

i.e. temperatures of many

thousands of degrees centigrade.

The general opinion has been put forward by Pringsheim* that light

cannot be produced in gases by collisions alone at temperatures available in the

laboratory. This view is now almost universally accepted, although it has been

contested by Paschenf and SmithellsJ. On the other hand, there seems to

be no doubt that certain gases, in particular HgO and COg, can have vibrations

excited by pure heating§, but the vibrations are heat-vibrations in the far

infra-red, and so correspond to values of jt> much lower than those we have been

considering, and it is quite in accordance with our theory that such vibrations

could be excited at moderate temperatures. These seem to be true vibrations

of the molecular structure, for they shew absorption as well as emission, and

the relation between the two is that of Kirchhoff's law : it is perhaps reason-

able to conjecture that they are produced by the motions of the atoms

relatively to one another in the molecule.

Rotational Energy.

485. We have already given a detailed investigation of the transfer of

rotational energy on the supposition that the molecules were excentric

spheres. The process of transfer in such molecules may be regarded as

sufficiently typical of the process of transfer of rotational energy in mole-

cules of all kinds.

In § 150, we obtained the equations

s=-|=-^"^^<"-»^> <9**)'

where K is the mean translational energy of a molecule, namely ^mC^, H is

the mean rotational energy of two degrees of freedom, namely ^nik^{-BT^ -|- -ur^)

or ^mA;^'572, and ^8 is a constant depending on the structure of the molecule.

The equation was only obtained for the case in which r, the distance between

the centre of gravity and centre of figure of the molecules, is small, and in

this case y8 was found to be proportional to r^ (cf. equation 322)).

From equation (944) it is clear that the partition of energy in an

undisturbed gas tends to a steady state in which H = |K. In this state

* Wied. Ann. xlv. p. 428, and Rapports presentis au Congres International de Physique,

Paris (1900), p. 100.

t Wied. Ami. l. p. 409. t Phil. Mag. [6] xxxvn. p. 244.

§ See Pringsbeim's report referred to above, p. 120, also Paschen, Wied. Ann. l. (1893),

p. 409, LI. (1894), p. 1, Lii. (1894), p. 209, liii. (1894), pp. 287 and 334, and Eubens and
Aschkinass, Wied. Ann. lxiv. (1898), p. 689.
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the energy is divided equally between the five degrees of freedom, as of

course it must be by the theorem of Equipartition of Energy. If the gas is

not in this state it tends towards it at a rate such that H — |K is reduced to

1/e times its value after an interval (cf. § 153) equal to

^^r-^ X (the average duration of a free path) (945).

This shews that the rotational energy is rapidly and easily interchanged

with translational energy, so that, in any physical changes, the rotational

energy may be expected to keep pace exactly with the changes in the

translational energy. We have, however, just seen that the energy of rapid

internal vibrations must not be expected to keep pace with the translational

energy in this way. This essential difference in the behaviour of the two

kinds of energy will at once suggest possible reasons why the rotational

energy may appear in the specific heats of a gas while the energy of internal

high-frequency vibration does not.

Vibrations of low-frequency would, on this view, occupy a position

intermediate between high-frequency vibrations and rotations : it might

conceivably happen that the energy of low-frequency vibrations could figure

in the specific heats at high temperatures but not at low temperatures.

Some such explanation might account for the observations of Scheel and

Heuse on the specific heats of gases at low temperatures (§ 269), although

it is more probable that a full explanation can only be obtained in terms

of the quantum-theory (Chap. XVIII).

The Propagation of Sound.

486. The question assumes a special interest in connection with the

propagation of sound in a gas. In any gas for which 7, the ratio of the

two specific heats, is less than If, the propagation of sound is dependent

on a transfer of internal energy through collisions, and if this energy is not

transferred with sufficient rapidity to keep pace with the transfer of trans-

lational energy, complications will arise which are not contemplated by a

simple theory of the kind which is given in books on Sound or Hydro-

dynamics. This simple theory deals only with the mass-motion of a gas on

the assumption that it may be regarded as a homogeneous fluid : it is the

province of the Kinetic Theory to investigate what modifications, if any, are

required when the molecular structure of the gas is taken into account.

We shall work out the problem in detail in the special case in which the

molecules of the gas are loaded spheres. We shall be able to infer the

nature of the general solution from the special solution obtained in this way.
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The molecules are loaded spheres.

487. At any point in the gas we suppose as usual that the mass-

motion is so small that squares of its components may be neglected. Also

the mass-motion is in one dimension, so that if we choose this direction for

the axis of x, the components of mass velocity may be taken to be Uq, 0, 0,

and Wq^ may be neglected.

Along the path of the wave, the quantities «o> ^. H and K will vary,

differing only slightly from their values in the undisturbed state. The

equations from which the propagation of sound is to be deduced will accord-

ingly be the equations of transfer of the four quantities u,,, v, H and K,

corresponding respectively to momentum, mass, and rotational and trans-

lational energy.

From equation (664), the general equation of transfer of any quantity

Q, simplified by the suppositions that there are no external forces, that

squares of the mass-motion may be neglected, and that the whole motion is

parallel to the axis of x, is found to be

' 1^^^^ = -^^^^^ + ^^ ^^^^>-

To find the transfer of momentum we put Q = u, so that Q = Uq and

AQ=0. We obtain

|(«.) = -g4(«-) = -|^(i.3-') = -A^l(,K) (947).

which is the equation of motion in the simpler theory.

To find the transfer of mass, we put Q = I, so that Q = l and AQ = 0.

We obtain the equation of continuity,

5 = -S<^'")
<»''«)•

To obtain the equation of transfer of rotational energy, we put Q = ^m/i^'ar\

dM

di

_ dH .

so that Q == H, uQ = MflH, and AQ is the same as the value oi v-r: given by

equation (324), namely

The equation of transfer of rotational energy is accordingly

'^(i;H) = -1(^MoH)-/3i.Vk(H-|k) (949).
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Similarly the rate of transfer of translational energy is obtained by

putting Q=^'mc^, so that Q = K, and

uQ = ^mu {u^ + v^ + w^)

= ^m (uo + U) (wo' + 2woU + U=^ + V2 + w^)

= ^muo (3U2 + V2 + W)

= ^WflK.

The equation of transfer of translational energy is accordingly

^l(^^)=-ljl^^o^) + ^^''^'^(^-i^) (950).

Since cc and t enter only through the differential operators ^ and ^,
Ob ooo

there will be a solution in which each variable differs from its value in the

steady state by a small term proportional to e*(i'«-9'«), this solution repre-

senting wave-motion parallel to the axis of sc. Let us then assume a solution

of the form

p = p + p' gUpt-gx)

H = H 4- H' e' (i'*-?*)

K= K-1- K'e*<^*-3*',

in which the unaccented v, H and K on the right-hand side refer to equi-

librium values.

The forms assumed by equations (947) to (950), on substitution of these

solutions and neglect of small quantities of the second order, are as follows

:

pvUo'-^(vK' +v'k)=0 (951),

pv'-qvUo=0 (952),

p(vK'-{-v'K)-^qKvUo' + i/3v^^/K{H'-^K') = (953),

J9l/H'-lySl>VK(H'-|K') = (954).

Eliminating the accented letters, we arrive at the relation

P f^^K-fw^'' ^
^'

488. Let us first suppose that the ratio of translational to rotational

energy adjusts itself with a rapidity which is great compared with the rate

of wave-motion. Suppose, to be more precise, that ^v^fK in equation (955)

is large compared with p. Then the left-hand member of this equation is
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very great, and the equation is satisfied by the vanishing of the denominator

on the right, so that

where ^o is the pressure in the undisturbed gas. Thus the exponential

Qi{pt-qx)
j^g^y i^g replaced by

-»«-
'^-f-x/Hf)

(''^«>-

This represents propagation of regular wave-motion with a velocity V.

The formula giving V is simply Laplace's formula for the velocity of

propagation of sound (cf § 263) since 7 = | for loaded spheres.

489. If the left-hand member of equation (955) is very small, the

equation reduces to

q-\^s[j)'

and this becomes identical with Laplace s formula for a gas in which y = If.

The smallness of the term can be effected either by the smallness of
p

/Si/ Vk or by the greatness of p. In particular, the term will always be small

at very low temperatures. The energy here adjusts itself slowly in com-

parison with the rate of passage of the sound, so that the variations in the

translational energy are too rapid to affect the rotational energy at all. Here,

then, we have a gas of which the molecules have five degrees of freedom, and

yet from experiments on the velocity of sound we should deduce the value

7=lHcf§274).

490. Let us write V for Laplace's value of the velocity of sound, so that

14k

15m
14k

V' =^ (957).

Then equation (955) becomes

i^v Vk _ 3
p-" -

Ifg-^ V^

so that

1+f
tp

3-^,—^ <9^«)-
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Suppose that ^v sj^jp is large, but not large enough for its reciprocal to

be neglected altogether. Then, as far as the first order of small quantities,

we have
2 ip

=fO 35 /Wi/VKy

so that the exponential e^ ^P* ~ ^^' may be replaced by

This represents physically a propagation of wave-motion with velocity V,

the whole motion being damped with a modulus of decay per unit length

S5^7WV ^^^^^'

Thus the first effect produced by the slowness of adjustment between

internal and translational velocities will not be a change in the velocity of

propagation, but a damping of the sound.

491. There is a second cause which tends to diminish the amplitude of

a wave of sound propagated in free air, namely the viscosity of the gas.

This has of course been neglected in the present investigation because we

have assumed Maxwell's law of distribution of velocities to give a sufficiently

good approximation—an assumption which, as is evident from Chapter VIII,

must involve the neglect of viscosity. It can, however, be shewn that the

effect of viscosity* is to introduce a linear modulus of decay

3-S.^ (»«»>

proportional to the first power of the coefficient of viscosity k, when k is

small, and to alter the velocity of propagation only by terms depending on k^.

It will be noticed that expressions (958) and (959) are both proportional

to p^, so that their ratio depends only on the gas, and not on the frequency of

the sound. The effect of the lag in rotatory energy can accordingly be fully

allowed for by supposing the coefficient of viscosity k increased to

or, what by equation (957) is the same thing,

^+ii (««•>•

The last term is independent of the density and proportional to the

square root of the temperature, as also is k. Hence formula (961) is the

* See, for instance, Lord Rayleigh's Theory of Sound, ii. § 346.
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mathematical expression of a multiplication of /c by a factor which depends

only on the structure of the molecules and not on the state of the gas. To

determine the amount of this increase, we use the formulae

K^^mvcl (§392),

from which we find that

K = |mC^=?^(c)^ (§30),

2VK /, 277rA;2\ ,..„,

This result is only strictly true for loaded spherical molecules, and for the

case in which r is very small. It will, however, enable us to obtain an

estimate of the order of magnitude of the effect under discussion in other

and more general cases.

Consider for instance an ideal diatomic molecule, formed by placing in

contact two homogeneous spherical atoms each of radius h. The value of k^,

the square of the radius of gyration about the centre of gravity, is now ^}f,

while r, the distance along the axis from the centre of gravity to the line of

impact when a collision occurs with another molecule, is now equal to h.

Substituting these values for k and r, expression (962) is found to become

1146 K.

The damping of sound due to the " lag " in the adjustment of rotational

energy is therefore about one-seventh as great as that caused by viscosity.

492. There is less difficulty in forming an estimate of the effect of this

" lag " upon the velocity of propagation of sound.

As far as squares of , equation (958) gives the value

_P [-, 2 ip 48 p^ \

^~ FV 35;Si77R~T225;eVK'^ '")'

so that the exponential e^ ^^* ~ ^^) becomes

The velocity of propagation, corrected as far as squares of the small

quantity, is therefore

\ ^ 1225 /S^j.
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Using the three formulae of § 491, this reduces to

V "^ 1225 UrV \c
.(963).

Now l/c is, roughly, the time of describing a free path, and is therefore of

the order of magnitude of o x 10~^° seconds. For a sound of moderate pitch

p is of the order of 3000, so that pljc is of the order of 10~^ For the sounds

of highest pitch which are audible, we may take p = 10^ so that plfc still

remains of the order of 3 x 10~^ It is therefore clear that for all sound,

the difference between expression (963) and the limiting velocity V is in

every way quite imperceptible, at any rate so long as the factor j-^
(or the

corresponding factor for molecules of different structure) is comparable with

unity.



CHAPTER XVII

statistical mechanics and the partition of energy

in continuous media

General Theory.

493. In Chapter V we considered the statistical mechanics of a general

dynamical system. The theory there obtained was applied in particular to

dynamical systems consisting of a great number of similar particles—mole-

cules or atoms. In this application there was always some difficulty and

uncertainty arising out of our ignorance of the exact structure of the mole-

cules or atoms under consideration.

We proceed now to apply the same theory to the motion of continuous

media. Three media will be of interest, namely a gas, the luminiferous

ether, and an elastic solid. In these applications of the theory, our former

uncertainty as to the mechanics of the system under discussion disappears,

for, to a first approximation at least, the dynamics of each medium is known.

The degrees of freedom of the medium represent a capacity for transmitting

wave-motions, and we shall find that the number of these degrees of freedom

can be easily determined.

Degrees of freedom in continuous media.

494. In each of the three media just mentioned, the possible motions

are all determined by an equation of the form

^? = a^V^<^ (964),

and this is known to represeni; wave-motion propagated with a velocity a*.

In this equation, ^ is a scalar quantity, or a component of a vector, having

different meanings according to the problem in hand. If the medium is

gaseous,
<f)

must be the velocity-potential f, while in the ether all the six

components of electric and magnetic force satisfy equations of the form of

* See for instance, Jeans, Electricity and Magnetism, §§ 578—580.

t Lord Rayleigh, Theory of Sound, ii. chap. xiii.
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(964)*. In an elastic solid, the equation is satisfied by the dilatation A and

by the three components of rotation cji, ta^, -03-3, these quantities being

defined by the equations

_du dv
, dw 1 fdw 9^>du dv dw 1 [dw dz\

where u, v, w are the components of the displacement at any pointf.

In the two latter cases, the different sets of solutions are not in-

dependent. If X, Y, Z the components of electric force in the ether satisfy

equation (964), then the components of magnetic force must necessarily

satisfy the same equation, and moreover of the three solutions X, Y, Z, only

two are independent, since X, Y, Z are connected by the relation

dX BY dZ^
da; dy dz

In the elastic solid solutions, CTi, nr^, zr^ are connected by the relation

9'nr, ovTn d-uT., .

H H = 0.
dx dy dz

Thus only two of these three sets of solutions are independent, to which

the A solution must be added, making in all three sets of independent

solutions.

495. For simplicity, let the medium under consideration be supposed

limited to a rectangular volume, extending from a? = to a; = a, from y = to

2/ = /3, and from ^^ = to ^ = 7.

Let the value of <^ at time ^ = be denoted by ^0, this being of course

a function of x, y and z only. By Fourier's theorem, the value of (p^ at every

point inside the volume a/Sy can be expressed in the form

v"«^v ^ ^7^^ 'rmry nirz
60 = ZZZAimn cos COS -^ COS

a P 7

. -^^v^n •
^"""^ miry nirz

. /n/^-\
-1- 2,2,ZBimn Sin COS —^ COS h (96o).

a p 7

In this equation the triple summation is to be taken over all positive

integral values of I, m and n from to 00 . The coefficients Aimn, -^imn, ••

are given by

. ^ [ f f , Ittx miry mrz ^ , ,

A-imn = 7- <Po cos COS —rr^ COS dxdydz,

[n , . Ittx miry nirz , , ,

I 9o sm — cos —-5-^ COS axdydz,
o^pyjjj a y8 7

* Jeans, Electricity and Magnetism, § 577.

t Love, Theory of Elasticity, chap. v.



494-496] Degrees of Freedom 383

etc. and there are six other sets of coefficients (say G, D, E, F, G, H), the total

of eight corresponding to all possible arrangements of sines and cosines of

lirx Tmry , mrz
, —5^ and .

Let the rate of increase in ^ at time ^ = be denoted by <^o- The quantity

4>o can also be expanded in series similar to the right-hand of equation (965).

Let the coefficients in this expansion of ^0 be A'lmn, S'l^n, etc.

Knowing the initial values of ^ and ^, the complete solution of equation

(964) can be written down. It is readily seen to be

J ^^^ Wx miry nirz [ . .
, a' smpt\

d> = ZZZ, cos cos —p7^ cos Aimn COS pt + A imn )^ a p J \ P ^

-^^_H . lirx miry nirz f j^ .
, t,i sin^*\ /ncia\+ ZZS sm cos -^ cos Bimn cos pt + B imn — + (966),

a /3 7 \ p J

where, in order that equation (964) may be satisfied, we must have

P==«'"^(s+|+^) (9«n

On combining the terms which have the same values of I, m, n in equation

(966): it is found that <^ can be expressed as a sum of terms of the form

* =2^cos(p«±'^±^±^^-.) (968),

where the summation is over all values of + ^, + m, + n, and the constants

K and e are of course different for each set of values. Put in this form, it is

clear that the solution represents sets of plane waves, travelling in different

directions. From equation (967) it follows that all waves are propagated

with the same velocity a.

496. Questions of great importance arise out of the classification of

these waves according to frequency and wave-length. It will be remembered

that the values of I, m, n are necessarily integral. We may now imagine

different values of I, m, n represented in a three-dimensional space having

^, 7), ^ for rectangular coordinates, and the different sets of integral values

will occur at the rate of one per unit volume in this space. The number of

sets for which p is less than some assigned value po will by equation (967)

be equal to the number of points having integral coordinates (/, m, n) in this

space, such that

—I 1— < -^

and therefore to the number of such points which lie inside the ellipsoid

whose equation is

i! + ^ + £ =^
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The volume of this ellipsoid is ^ —^ j)^, and this is accordingly the

number of sets of values of I, m, n for which p < po. By differentiation, the

number of sets for which p lies within a range from p to p + dp is

-^sP'dp (969).

497. We have so far been dealing only with abstract solutions of the

equation (964). Before applying these results to a definite problem, we
must eliminate such solutions as do not satisfy the boundary conditions of

the particular problem in hand.

In a sound problem, we are dealing with the vibrations of a gaseous

medium ;
(f)

is the velocity-potential, and the boundary condition to be

satisfied is that d(})/dn shall vanish all over the boundary. Applied to the

particular volume under consideration, this requires that dcfjjdx shall vanish

when x — and when a; = a, and similar conditions must be satisfied for y
and z. The effect of this restriction is to limit the solution (965) for <^o

to terms in A ; all the solutions in B, G, ... H disappear because they do

not satisfy the boundary conditions. Thus the complete solution (966)

reduces to

.-,^_, Ittx miry mrz f . ^ ., sin ©A rr^>^,^\6 = 2.2,Z cos -— cos -—f- cos Aimn cos pt + A imn
—^ • • .(970).

OL p <y \
^ p 1 ^ '

The number of separate free vibrations is now only one-eighth of that

previously estimated, and the law of distribution according to values of p
will, from formula (969), be

• ^>^^T (9'i)-

498. In a light or radiation problem, <^ may be supposed to be any one

of three components of electric force or of magnetic force. For definiteness,

let us suppose ^ to be identical with X, the iz;-component of electric force.

In order that the system may be a conservative one, there must be no

possibility of energy passing through the walls of the containing vessel.

These walls must accordingly be thought of as perfect reflectors, and there-

fore as perfect conductors. One boundary condition must clearly be that

X shall vanish over the planes 2/ = 0, y = & and ^ = 0, ^ = 7, and this requires

that all the terms in ^0 (equation (965)) which contain cosines of rmryl^

or mrzj'y must vanish. We are left with the solution

_ ^-^_^ lirx . miry . mrz / „ .
,

7-./ sinwAX = 222 cos sm ——^ sm Jbimn cos pt + h imn
—^ I

a IS y \
^ p )

+ 222 sm sm-^ sm ( Himn cos pt +H imn
——

] . . .(972).
ct p 7 \

^
p J



496-500] Degrees of Freedom 385

From this value of X, the values of the remaining components of electric

and magnetic force can be written down, and it is at once found that all the

other boundary conditions are satisfied*. Thus formula (972) contains the

solution of the problem ; it contains only a quarter as many constants as the

general solution (966) in which the boundary conditions were disregarded.

Formula (969), which expressed the law of distribution before the

boundary conditions were taken into account, must accordingly be divided

by 4, and we obtain for the law of distribution of values of p in the light

problem,

$l;.fdp (973).

499. Any one term in the solution for ^ can exist by itself, and the

number of separate terms will accordingly be the same as the number of

separate free vibrations. It will be noticed that the number of free vibra-

tions in the ether (cf. formula (973)) is double that in a gas. This could

have been foreseen from the considerations of | 488, or can be seen from the

circumstance that a sound-wave is determined by one vector, namely the

displacement in the direction of propagation, while a light wave is de-

termined by two vectors which determine the intensity and direction of

propagation and of polarisation.

In an elastic solid waves of both kinds can coexist. We have a normal

wave of compression analogous to a sound-wave, and a tangential wave of

distortion analogous to a light-wave. Thus the number of separate free

vibrations in an elastic solid medium is equal to the sum of the corresponding

numbers in a gas and in the ether. It must however be remembered that in

an elastic solid there are two different velocities of propagation, say a^ for

waves of compression and a^ for waves of distortion.

600. In the formulae obtained, the factor a^y the volume of the

enclosure enters as a multiplier, so that the number of free vibrations per

unit volume is the same whatever the volume of the enclosure. We have

only proved this to be true for rectangular enclosures, but in physical appli-

cations the wave-length of the vibration will always be very small in

comparison with the dimensions of the enclosure, so that we should expect

that the shape of the enclosure would become unimportant just as its size

has been seen to do. That this is actually the case has been formally proved

by Weylt.

* Cf. Jeans, Electricity and Magnetism, § 593.

t H. Weyl, Math. Annalen, lxxi. (1912), p. 441. See also papers by the same author :

Journal fUr die reine and angewandte Mathematik, 141 (1912), pp. 1 and 163, 143 (1913), p. 177,

and Rendiconti del Circolo Mat. di Palermo, xxxix. (1915), p. 1.

J. G. 25
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Collecting our results, we find that the number of free vibrations per unit

volume in different media is that given in the table below. The first column

gives the number of vibrations classified according to frequency of vibration.

If \ is the wave-length of any vibration of frequency p/27r, we have

X, = 2'7ra/p, so that dX = 2'7rap~^dp. On transforming the variable from p to

X, we obtain the corresponding numbers for vibrations classified according to

wave-length, and these are given in the last column of the table.

Medium

Vibrations per unit volume of the

medium classified according to

PFrequency 5— Wave-length \

Gas

Ether

Elastic solid

p^dp

p'^dp

pHpf 1 1\
7r2 \^a^^'^ ai)

47rX-''rfX

87rX-4(^X

127rX-*rfX

501. Before leaving this subject, it may be noticed that in any medium

whatever, the number of free vibrations per unit volume, of wave-length

between X, and X, + rfX, (where X is supposed large compared with the scale of

structure of the medium, if it is coarse-grained, and small compared with the

size of the medium), must necessarily be of the form

Cx-^cZx,

where C is a numerical constant. For no other type of formula would be

possible, consistently with the physical dimensions of the quantities involved.

The whole problem accordingly reduces to the determination of the

multiplier C, which of course can differ from one medium to another. And
for the three media we have had under consideration, the three values of C
must be in the ratio 1:2:3 for the reasons already stated—in a gas there is

only the one set of normal vibrations, in the ether there are only transverse

vibrations, but there are two independent transverse vibrations, in different

planes of polarisation, for each normal vibration in the gas ; and finally in

the elastic solid there are both normal and transverse vibrations.

Statistical Mechanics.

502. When once the number of independent free vibrations has been

counted up, the problem of determining the partition of energy in a continuous

medium becomes an exceedingly simple one. For each vibration is known

from the dynamics of the medium, as expressed in the general equation
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(964) and its solution (966), to consist of a simple harmonic motion, so that

if <^i is the coordinate of any vibration, the corresponding energy will be of

the form
E, = \a,4>,^+^h,4>^ (974),

where a^, h^ are constants. Each vibration accordingly contributes two

squared terms to the energy of the whole system. Let X be supposed so

small that the number of vibrations of wave-length between X and X + dX,

namely CX~*dX, is a large number. Then the total energy of the corre-

sponding 2CX~*dX squared terras must, by the general theorem of

equipartition of energy (§ 100), be

CRTX-'dX (975),

this energy being of course at the rate RT per vibration.

On inserting the appropriate value for C, this formula will give the

partition of energy according to wave-length in the medium under con-

sideration.

Analysis of Energy in a Gas.

503. We have so far thought of the heat-energy of a gas as residing in

molecular motion, but formula (975) regards it as the energy of trains of

waves of sound. Similarly the heat of a solid is usually thought of as a

manifestation of random agitations of the molecules, but formula (975)

shews that it also may be regarded as the energy of regular elastic solid

vibrations (cf. § 3).

Before proceeding further, it will be useful to make a rather detailed

study of the relation between these two widely different ways of regarding

the energy of a medium. For simplicity we shall confine our attention to

the case of a gas.

Imagine the whole volume fl = a/37 of the gas divided into n rectangular

cells each of volume co, and of edges Ba, 8yS, By parallel to the edges of the

large rectangular volume, B here being regarded as a small fraction. The

total number of cells n is also equal to 1/B^.

The molecular arrangement in the gas is sufficiently known from the

investigation of Chap. III. The molecules are distributed absolutely at

random between the n cells, and each velocity component is distributed

according to Maxwell's Law.

Let us consider the arrangement of positions first. An arrangement in

which the molecules are placed at exactly equal distances apart, in some

regular geometrical order, is of course a possible arrangement, but is no more

typical of the normal state than would be a motion in which each molecule

had exactly the same velocity. So also an arrangement in which each of the

25—2
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n cells into which the volume is divided contains the same number NIn of

molecules is possible, but is not typical of the normal state.

As in § 45, let us consider as typical an arrangement in which

ill, (I2, ds, ... dru

the numbers of molecules in the respective cells, are given by

N N
0-1 =—l-tti, tta =—I- Og, etc (976),

n n

where the a's are small compared with N/n, and

a, + a^ + ...+an = (977).

Let the sth cell have as the coordinates of its point furthest from the

origin pBa, qB^, rSy, and let a« also be denoted by a^g,..

Consider an arrangement in which the distribution of molecules is such

that in every cell

°^pqr= ^Imn COS Ip BtT COS 7nq Stt COS nvBTT (978),

where ^imn is a constant. This is not a typical arrangement, for there is

regularity in it. As we pass along any line parallel to the axis of x, p8

varies from to 1, so that sin IpBir varies harmonically, with a wave-length

such that there are I half-periods within the length a inside the rectangle.

Similarly the arrangement in any chain of cells parallel to the axis of y is

harmonic, there being m half-periods inside the rectangle, and similarly for

the axis of z. When the cells become small compared with the wave-length,

cos Ip Bit may be replaced by cos , and so on, whence it appears that

equation (978) expresses a distribution of density in a single free vibration

such as is specified by equation (970).

In general the values of Upgr for the different cells will not be of the

form (978), but whatever the values of a^^, they may always be expressed by

Fourier's theorem as the sum of a number of terms of this form. Thus we

may suppose the most general typical distribution to be of the form

apgr = '2X%^ijnn COS IpBiTCos 7nqB7rcos nrBir (979),

where the summation is from 1 = 1 to I = 1/B, and similarly for m and n.

If, as before, probability is measured as a fraction in the appropriate

generalised space, then the probability that Ui, a.,,... shall have the values

assigned to them by equations (976) is, by equation (73), equal to 6a given by

6'« = n4"(27ri\r)-M«-i)e--Vi:„^

where (cf. equation (82)),

NKa = l~Xa,^ (980).
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The probability that a^, Wg. "s. • • • shall lie within a small range daida^das . . .

,

dtti being small compared with N/n, and so on, is therefore

dada^da^das (981).

Formula (981) gives the law of distribution of the a's, and therefore of

the a's. Let us now change the variables from the a's to the ^'s, the relation

between the two sets of variables being that given by equations (979). Since

these equations are linear, we have at once

dttidcLq . . . = A d^id^2 •>

where A the modulus of transformation is a constant.

Squaring equations (979) and adding corresponding sides,

n n
2a^ = S^^ (SSS cos'^ IpSTT cos^ mqZTr cos^ nrZir)
1 1 I mn

re 1 n

= S^3r = i^fr ^^^2>'

so that equation (980) becomes

The law of distribution (981) now becomes

n4"(27riV^)-i("-l)Ae-l6]^^^^'''^^'-'-^d|,c^^,....

Thus the law of distribution of each ^ is the same, namely

Ce~^^^dl

where C is a constant, and we have

— — ^N
1x^=^3^=...= -^.- :...(983).

The next step is to find the potential energy of the trains of waves

^1, f.2> If it>o is the equilibrium pressure, and if s denotes the con-

densation (Bp/p) at any point, the potential energy measured from the

equilibrium configuration is

V= ^po
jj

js''da;dydz = ^pol (j^) co.

Substituting for Sa^ from equation (982), this becomes

F=^vpon(iy(i.^+f.^-i-...)

and it now follows from equations (983) that the average value of each term

in this expression for V is ^RT.
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Thus we have seen how, in the typical normal state, the random arrange-

ment of the molecules as regards position may be resolved into regular trains

of waves. And, as we should expect from general statistical mechanics, the

amplitudes of these waves are seen to be distributed according to Maxwell's

Law, and the mean potential energy of each wave is \RT.

504. The random motions of the molecules can be resolved into trains

of waves in a similar way* ; the final result of this analysis can be seen from

the general principles of wave-motion, which indicate that the mean kinetic

energy of each wave must be equal to its mean potential energy and therefore

to ^RT.

505. To sum up, it appears that the potential energy in a gas, which

originates from the molecules not being perfectly evenly spaced, can be

expressed as the potential energy of trains of waves in the form

2F=/9,</>,^-H/3,<^,^-F...,

while the corresponding kinetic energy, which arises from the random

agitation of the molecules, can be expressed as the kinetic energy of the

same waves in the form

1T=a^^^^ + a^^i+ ....

Further, the average energy of each term is the same, being given by

and hence the average value of the energy of any vibration, say E^ as given

by equation (974), must also be RT.

Thus a detailed study of the mechanism of molecular energy leads to

exactly the same result as was obtained in § 502 from the general principles

of statistical mechanics. It has also given us a further insight into the

physical meaning of this result.

506. We arrived at formula (975) by supposing X to be small, but

except in a perfectly structureless medium there is a limit set to the

smallness of \ by the coarse-grainedness of the medium. For instance, in

a gas at normal pressure, the distance apart of adjacent molecules is about

3 X 10"^ cms., so that it is meaningless to consider a wave of sound in this

gas, for which the wave-length is smaller than 3 x K)-'' cms. But there will

always be some range, say from \„ (small) to Xj (large), over which formula (975)

is applicable.

* For details of the actual analysis, see Phil. Mag. xvii. (1909), p. 239.
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On integration the total energy of waves of wave-length between these

limits is found to be

E=\ CRTX-*d\ =XCRT^-^.

As a rough approximation, we may suppose that \i~* is negligible in

comparison with \o~^, and also that all the energy of the medium can be

expressed as the energy of waves of wave-length greater than Xo, where Xo is

a length comparable with the scale of coarse-grainedness of the medium.

The total energy per unit volume of the medium is accordingly

E=^CRT\o-' (984).

The specific heat at constant volume of unit volume of the medium will

now be given by

C.p = J^ =
I -J

CX„-« = 1-075 X 10-^^ X C\o-^

so that the value of Xo for any medium can be found from a knowledge

of the specific heat.

For instance, for air at normal pressure, C„ = *172, p = '00129, C = 47r,

so that Xo = 3*9 x 10"' cms. This is comparable with the average molecular

distance 3'3 x lO"'' cms., as of course it ought to be. If the scale of molecular

structure in a gas had not been known, it could have been roughly determined

in this way.

To take a second instance, the value of C^p for water is unity, and

C =47r, since there are no waves of distortion, so that Xo = 2*4 x 10~^ cms.

This, then, must be comparable with the mean molecular distance in water,

and would provide a rough approximation to the diameter of the HgO
molecule, if this were not otherwise known.

507. In a perfectly continuous or structureless medium we may take Xo= 0.

The only structureless medium which we need consider is the luminiferous

ether. For this C = Stt, and the law of distribution of radiant energy (cf.

formula (975)) will be

SirRTX-'dX (985).

According to the classical mechanics this is the formula which ought to

give the partition of energy in ether in temperature equilibrium at tem-

perature T. It ought to be obeyed for all wave-lengths from a great wave-

length Xj comparable with the size of the medium up to the very shortest

wave-lengths. It was first given by Lord Rayleigh* in 1900, being suggested

only as a theoretical formula which might perhaps be found to agree with

* See Lord Rayleigh, Phil. Mag. [5] xlix. (1900), p. 639, and Nature, lxxu. (1905), pp. 54,

243. See also J. H. Jeans, Phil. Mag. [6] x. (1905), p. 91.
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experiment for very long waves ; there was never any question of its being

expected to give the partition of energy for all waves*.

On putting Xq = 0, formula (984) gives E = qc except when T = 0, the

specific heat C„ of the medium becoming infinite.

Thus, excluding the impossible case of a system having infinite energy,

we see that the temperature of a perfectly structureless medium ought to

be invariably zero. Whenever an exchange of energy takes place between

the medium and a material system placed in it, the medium must always

gain energy and the rest of the system must always lose energy. The final

state can therefore only be one in which all of the energy of the material

system has been transmitted to the medium, and both are at zero temperature,

the only exception being when a state is previously reached such that further

transfers of energy cannot take place.

We see that the presence of a medium of this kind leads to exactly the

same result as was previously obtained in Chapter V (§ 84) by supposing the

material system to lose energy in a way which could be represented by the

existence of a dissipation-function. We now see that the presence of a

continuous medium, with an insatiable capacity for energy arising from its

infinite degrees of freedom, can be exactly represented by the existence of a

dissipation-function ; a final state is only reached when the material system

can no longer transmit energy to this medium.

508. Physical illustrations of the ideas which have just been developed

will occur to everyone. A pendulum, suspended and set in motion inside a

closed vessel containing air, will continue to lose its energy of vibration until

it comes to rest. Its energy will have been absorbed, primarily, in setting

up waves in the air, but ultimately these may be regarded as equivalent to

a random molecular motion. Strictly speaking, the air is not an absolutely

continuous medium : its capacity for energy is not infinite, whence it results

that the pendulum is not absolutely reduced to rest. In its final state it has

a certain very small motion, of the nature of a Brownian movement, and of

amount appropriate to a " particle " of its size, namely a motion such that its

kinetic energy is on the average equal to that of one molecule of the air

surrounding it.

A further instance of these principles will be found in the state of things

considered at the end of § 3 (p. 3).

* If the set of ideas developed in § 506 were applicable to the ether, we could obtain the scale

of coarse-grainedness of the ether directly from equation (984). For at 0° C. the value of E is

3-93 X 10-' (cf. § 516 below), so that Xq would be equal to about -0043 cm., and the value of Xo

would moreover vary inversely with the temperature. This is enough to shew that the energy

of the ether is not to be explained in terms of the classical mechanics.
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509. According to our present theory, similar results ought to follow in

the case of the ether. All the evidence available agrees in shewing that there

is nothing of the nature of coarse-grainedness in the structure of the ether.

Even if the ether has a structure, this structure must certainly be very

much more fine-grained than that of a gas, being indeed so fine-grained as

to have escaped observation altogether. Thus we should expect the loss

of energy of a material system to continue until all its energy had been trans-

mitted to the ether.

Consider for definiteness a mass of iron, say at 0° C, placed inside an

enclosure whose walls are perfectly impervious to radiation, so that the iron

and the ether in the enclosure form a self-contained system. According to

our theoretical result, the iron ought to lose energy continually until its

temperature becomes close to the absolute zero, and the whole energy of the

system has passed into the ether. But so far from this actually happening

experimental evidence indicates with considerable certainty that a final state

is rapidly attained in which the iron remains approximately at 0° C, and the

partition of energy in the ether is in thermodynamical equilibrium with the

matter. The energy of the ether is however of density 3"93 x 10~^ ergs per

cubic centimetre, while that of the iron is of the order of 8 x 10* ergs per

cubic centimetre. In this state, almost all the energy resides in the com-

paratively few degrees of freedom of the iron, while only an infinitesimal

amount passes into the enormously greater number of degrees of freedom

of the ether. Nothing of the nature of equipartition of energy appears to

hold.

Here we see, in its most vivid form, the complete contradiction between

experience and the results of the classical mechanics, which has led to the

development of the quantum-theory. Before accepting this contradiction as

finally proved, it will be of value to examine in more detail the mechanism

of transfer of energy between matter and ether. We shall find that a study

of this mechanism will merely lead to the same general result as has been

obtained by the wider theory of statistical mechanics.

Radiation from Resonators.

510. Consider first the exchange of energy between a material resonator,

as for instance a Hertzian vibrator, and the ether.

Let the resonator be regarded as a dynamical system, obeying the classical

laws. Let its kinetic and potential energies be of the forms
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in which a and b are constants. When the resonator oscillates free from

external disturbance, its equation of motion is

a4> + b<f> = (986),

and the solution of this equation is

<}) = A cos pt + B sin pt (987),

where A, B are constants, and p is such that ap'^ = b.

For a motion which is influenced by external agencies, such as the

interaction with the ether, the equation of motion will be of the form

(cf. § 476)
a4> + b<f)= U (988).

The value of U during any interval ^ = to t = T may, by Fourier's

theorem, be expressed in the form

U=-r(FqCOsqt + GqSmqt)dq (989),

where the coefficients Fq, Gq are given by

Fq= I
^ Ut^t' COS qt'dt']

Gq=
j ^Ut^t' sin qt'dt'l

.(990)

and on comparing with the functions X, Y, defined by equations (925), we
see that

X = ~F^, Y=^-Gp.
ap ^ ap ^

During the interval from ^ = to t= r, the gain of energy for an average

resonator was shewn, in § 477, to be 1 6 {X^+ Y^), and this may now be put in

the form

i6 (X^ + 7=) = ^^ (F,^ + ^/) =^ (iP/ + (?/) (991).

Let the force U be supposed to originate in an electric force Z in any

direction in the ether, then we may assume that U= cZ, where c is a constant.

Let the radiant energy per unit volume in the ether, analysed into waves of

different frequencies, be supposed to be

/,

q= oD

Eqdq.

Then the mean value of Z^ will be |7r times this total radiant energy, and

the mean value of U''^ from time to t will be equal to c^ times the mean
value of Z^. We accordingly have

-
I

~'
U'dt^^iirc^r''^ Eqdq (992).

"^ J t= J q =
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But also, from a well-known theorem of Lord Rayleigh *, if U is given by

the expansion (989), we have

-\ U-'dt=—\ (F,' + Gq^)dq (993).
T J t= TTTjq^o

Equations (992) and (993) both express the spectroscopic analysis of the

mean value of U^, so that the constituents must be the same in the two

equations, giving

and we now have, for the average rate of absorption of energy by the

resonator, from equation (991),

4 (J-/ + (?/) =
I
^'^, (994).

511. We must next examine the average rate of radiation of energy

from the resonator. Assuming the radiating mechanism to be electrical, we

may suppose the average rate of emission of radiation in the interval from

f = to < = T to be given by either of the equivalent formulae

-rc4>'dt = --rcci>4>dt,
TJo TJO

in which (7 is a constant. The left-hand formula gives the expression of

Larmor for the radiation, while the right-hand formula gives that of

Lorentz.

On substituting for ^ from equation (986), the right-hand formula

becomes

— V<i>{U-hd>)dt

Using the values for (j) and JJ given by equations (987) and (989), we
readily find that, on averaging over all resonators.

so that the average rate of emission of energy is

arJo ^ a ^ a ^

If there is a steady state of equilibrium between the resonators and the

ether, this rate of emission must be equal to the rate of absorption obtained

in formula (994). Comparing these expressions, we obtain

on
^pdp-'—^M'p^dp (995),

which gives the partition of radiant energy in the steady state.

* Phil. Mag. [5] xxvn. p. 466.
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512. Whatever the mechanism of the resonator may be, if only it obeys

the laws of classical mechanics, we may put

^'=RT (996),

and the value of Ep as given by formula (995) is seen to depend only on the

quantities C and c, which in turn depend on the structure, but not on the

motion, of the resonator.

For a Hertzian oscillator, C/c = 2/3 V^, where V is the velocity of light,

and formula (995) becomes

E.dp^^^fdp (997).

Transforming to wave-lengths by means of the relation p\ = 2ir V, this

DGCOrQGS

EKdX = S'7rRT\-*dX (998),

agreeing exactly with the result of the general theory of § 502.

If the resonator consists of a single free electron capable of performing

isochronous oscillations of frequency p/^ir, we have c = e and C=^e^/V^, so

that the partition of energy is again that given by equations (997) and (998).

Radiation from Free Electrons.

513. The partition of energy to be expected from other mechanisms oF

radiation can be worked out in detail in a similar way, but so long as this

mechanism is governed by the laws of ordinary classical mechanics, only one

result can possibly be obtained, namely that which is given by the general

dynamical theory of §§ 502, 507, and is expressed by equation (985). The

following cases are of interest.

When free electrons thread their way through the interstices of a solid,

the forces to which they are subjected result in accelerations which must in

turn, according to the classical mechanics, be accompanied by an emission

of radiation. A steady state will be attained when the radiation emitted in

this way is exactly equal to that absorbed by the matter. The problem of

determining the steady state was first considered by Lorentz*, who shewed

that the partition of energy for waves of great wave-length must be that

expressed by formula (998). Later, the same question was attacked by the

present writer f, who confirmed Lorentz's result by a different method, and

shewed that it could be extended to waves of all wave-lengths.

* "On the Emission and Absorption by Metals of Bays of great vi&ve-length," Koninklijke

Akad. van Wetemchappen, Amsterdam, April 24, 1903.

t "The Motion of Electrons in Solids," Phil. Mag. xvii. (1909), p. 773, and Phil. Mag. xviii.

(1909), p. 209.
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A number of free electrons moving in a field of radiation will, quite apart

fi-om the presence of matter, both emit and absorb radiation. A steady state

will be reached when the radiation of any wave-length absorbed by the

electrons is statistically equal to that emitted. It can be shewn* that, if the

classical mechanics are obeyed, a final state will be reached only when

the partition of energy in the ether is that given by equation (998).

514. These results merely illustrate and confirm the general result

already obtained in § 502 ; they add nothing to it. So far as the radiation

problem is concerned, we may summarise the conclusions obtained in the

statement that for equilibrium to exist between matter and ether, the law of

partition of radiant energy in the ether in terms of wave-length, must be

that given by formula (998), namely

SirRTx-^dX (999).

It follows, as we have already seen, that the temperature of the matter

must be zero : there can be no equilibrium between matter and ether until

the matter has lost all its energy to the ether.

This is the conclusion arrived at from a study of the radiation problem

based on the classical system of dynamics : the state of things predicted is,

however, so utterly different from that observed in nature that we are com-

pelled to contemplate an abandonment, or at least a modification, of the

classical mechanics.

* Phil. Mag, xxvu. (1914), p. 14, or J. H. Jeans, Report on Badiation and the Quantum

Theory (1914), p. 14.



CHAPTER XVIII

radiation and the quantum theory

Thermodynamics of Radiation,

515. The classical system of mechanics, when applied to the radiation

problem, led to a solution which proved to be in violent disagreement with

experience. We shall begin the present chapter by explaining a different

line of attack on this problem, based only on general thermodynamical

principles.

Consider an enclosure of any shape, of which the walls are impervious to

energy of all kinds, and therefore in particular to radiation. Let it contain

a certain amount of heated matter which will of course fill the enclosure with

radiant energy, and let a steady state finally be reached in which the matter

is at a temperature T. Since there is no loss of energy in this state, each

piece of matter inside the enclosure retains its temperature indefinitely, and

therefore the amount of energy it gains by absorption of radiation must

exactly balance the amount it loses by emission of radiation. Considering

two pieces of matter, A and B, it is readily seen that the stream of energy

which flows from A to B must be exactly equal to that which flows from

B to A. Hence we arrive at the conception of a stream of energy appropriate

to matter of temperature T, this depending only on T and not on other

quantities involved in the structure of matter. It follows that the density of

radiant energy inside the enclosure will be a function of T only *.

Stefan's Law.

516. Let it be supposed possible to increase or decrease the volume of

the enclosure, as for instance through one of the walls being supposed to

consist in part of a moveable piston. Consider a change in which the total

volume of the enclosure is increased from v to -y + dv, and suppose that the

amount of matter inside the enclosure is so infinitesimal that its heat-energy

may be disregarded.

* A fuller discussion of the matter of this section will be found in almost any text-book on

Heat. See for example, Poynting and Thomson's Heat, Chapter xv, or Preston's Heat (Second

Edition), Chapter vi, Section 5.
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The equation of energy for the radiant energy inside the enclosure can

be written down in the same way as that for a gas in § 244. The equation is

readily seen to be (cf. equation (487*))

dQ = d{Ev)-\-pdv (1000),

in which p now denotes the pressure exerted on the piston by the ether

inside the enclosure, and so is the pressure of radiation corresponding to the

energy E per unit volume inside the enclosure.

Assuming the second law of thermodynamics to hold, dQ/T must be

a perfect differential d(f), where dQ refers to the change of energy in any

reversible process. Such a process will be one in which the volume v and the

temperature T change, while the radiant energy remains always in equili-

brium with the temperature T of the matter. For a change of this type,

,. dQ d(Ev) p, fE + p\ J V dE ,^ .-.^^-.x
d<f> = ^=-^Y^+^dv = {-^jdv + j,-j^dT (1001),

and this will be a perfect differential if

^ (E+p\_d_(v_dE\
dT\ T J'dvVrdTj'

Since E depends only on T and not on v, the right-hand member of this

equation reduces to ™ -7™ , and the equation becomes

^P -^^ (1002).E + p T

The value to be assigned to p, the pressure of radiation, is known both

from theory and experiment. Since the radiation now under consideration

must be supposed to be scattered equally in all directions in space, the

pressure per unit area must.;be equal to one-third of the energy per unit

volume. Putting p = ^E, equation (1002) becomes

dE_ dT
E~ T '

of which the integral is

E = aT' (1003),
where o- is a constant.

The law expressed by equation (1003) is generally known as Stefan's Law,

having been announced as an empirical law by Stefan* in 1879. A theo-

retical proof, similar to the one given above, was published by Boltzmannf

in 1884, following a method previously developed by Bartoli;]:. Stefan's Law

* Wiener Sitzungsber. lxxix. (2) (1879), p. 391.

. + Wifd. Ann. xxii. (1884), p. 291.

J Sopra i movimenti prodotti dalla luce e dal calore (La Monnier, Florence, 1876).
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is found to agree with experiment*, the usually accepted value for the

constant a being Kurlbaum's valuef

o- = 7-06 X 10-15 c.G.S. (centigrade) units.

The value of E at 0° C. is accordingly

ctTq* = 3"93 X 10""® ergs per cu. cm.

Wiens Displacernent Law,

517. WienJ has shewn how this thermodynamical argument can be

extended so as to give not only the total energy E at temperature T, but also

some knowledge of the partition of this energy according to wave-length.

Consider what may be called an adiabatic change, namely one in which

the volume of the enclosure changes while no energy either enters or leaves.

To study such a change we put dQ = in equation (1000) and obtain

d (Eu) = - pdv = - ^Edv,

of which the integral is readily found to be

Ev^ = constant,

or, since E is proportional to T^,

T# = constant (1004).

This equation expresses the adiabatic law for radiation, just as equation

(515) expressed the corresponding law for a gas.

Equation (1004) shews that an alteration in the volume v must alter the

temperature of the radiant energy. The partition of this energy according

to wave-length must also be altered. To understand the mechanism by

which this change is produced, let us fix our attention on a single beam
of radiation of wave-length \. This will be reflected round and round the

enclosure, and the reflections must include a certain number from the moving

piston. At each such reflection the wave-length of the beam must be altered

in accordance with Doppler's principle. If the motion of this piston is

sufficiently slow, each beam will meet the piston the same number of times,

and as the conditions of reflection will, on the average, be the same for

every beam, the whole of the radiation which was initially of wave-length A,

must ultimately be changed into radiation of the same new wave-length V.

* See, for instance, Winkelmann's Handbuch d. Physik, iii. (Warme), p. 374.

t Wied. Ann. lxv. (1898), p. 746. Other determinations of the value of a are 7-0 x 10"''*

(Bauer and Moulin, Comptes Rendus, 1910). 7-10 x 10-^^ (Valentiner, Ann. d. Physik, xxxi. (1910),

p. 275). See also Richardson, Electron Theory of Matter, p. 355.

+ Berlin. Sitzuvysber. 9 Feb. 1893; Wied. Ann. lii. (1894), p. 156, and lviii. (1896), p. 662.

I have followed Wien's method less closely than that of Larmor (Brit. Assoc. Report, 1900 ;

Encyc. Britannica, 11th edition. Art. " Radiation," xxii. p. 787).
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From Doppler's principle, it is clear that the ratio XjX' must depend

solely on the motions of the walls of the enclosure, and must therefore be the

same for all wave-lengths.

During the change in the volume of the enclosure there can be no

transfer of energy between the different constituents of the original radiation.

Each constituent will alter its colour, but cannot alter its energy. Never-

theless, the final partition of radiant energy, after the change of volume

has taken place, must itself be in thermodynamical equilibrium at some new

temperature T'.

For if this were not so, it would be possible to allow the final radiation

to interact with an infinitesimal amount of matter, and this would result in

an interchange of energy between the various constituents of the radia-

tion until thermodynamical equilibrium was attained. The entropy of

the radiation would necessarily increase during this process. Let ^, ^' be

the entropies before and after the change of volume, and let <^' -I- S be the

entropy after thermodynamical equilibrium is attained, S being positive.

The volume of the enclosure may now be restored to its original value v.

The change in entropy must by equation (1001) be </> — <^', so that the final

entropy must be <^ -H S. The maximum entropy possible at the temperature

is, however, by hypothesis, equal to j), so that S, which cannot be negative,

must be zero. Thus the compressed radiation must itself have been in

thermodynamical equilibrium at some new temperature T'.

It now follows that the ratio of change of wave-length X/A,' must depend

only on the volumes and temperatures before and after the change. The

temperatures are however connected with the volumes by relation (1004), so

that X/X.' may be thought of as depending only on v and v. Hence, from

a consideration of physical dimensions, we must have

\'~\v'

Combining this with equation (1004), we obtain

\T=\'T' (1005),

so that XT remains constant for any constituent of the radiation through all

changes of volume and temperature.

518. It follows that the law of partition of radiant energy at any

temperature T can be deduced from that at any standard temperature T'

by altering all wave-lengths in the ratio required by relation (1005), while

at the same time multiplying the energy throughout by the factor required

to give the appropriate value to the total energy. For this reason, the law

expressed by equation (100^) is commonly called Wien's Displacement Law.

J. G.
5"

26
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The law of partition of energy at temperature T must accordingly be of

the form
E^dX = (/) (XT') F{T) d {XT),

in which, in order that equation (1001) may be satisfied, F {T) must be

proportional to T*. Hence it appears that the partition of energy may be

expressed in the form

E^d\ = F{\T)TX-'dX (1006).

These laws are believed to be completely confirmed by observation.

519. So far as is known, equation (1006) gives all the information which

can be obtained about the law of partition of radiation from thermodynamical

principles alone.

It will already have become evident from Chapter V that the second law

of thermodynamics is very much more general than the particular set of

dynamical laws from which it was there derived. Indeed, the second law

appears to be deducible from almost any set of dynamical laws which imply

the law of causation*. Thus equation (1004) may be regarded as the limit

of our knowledge until we assume some particular set of dynamical laws,

when it must of course be possible fully to determine the function F {XT).

Different forms of this function may be thought of as associated with different

sets of dynamical laws.

520. For the classical dynamical laws, the function F{\T) was evaluated

in the last chapter, and was found to reduce to a constant, namely SttR,

a value which was readily seen to be in contradiction with experience.

In general it may be noticed that F {XT) must be of the same physical

dimensions as ^irll, and so must be of the formf

F(XT)=-^'irRf(—-'\
RTXJ '

where k is a, constant, of which the physical dimensions must be those of

RTX, so that / reduces to a pure numerical multiplier. It will be seen that

the classical system of dynamics can provide no universal constant of the

physical dimensions of RTX {i.e. energy x length), a circumstance which in

itself shews the necessity of looking beyond the classical dynamics.

Phil. Mag. xx. (1910), p. 943.

(k \ / k k \

RT\)
°"^^* ^° ^^ replaced ^7 f i^f^ . ;^. •••

j ,
but this generali-

sation proves to be unimportant.
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Planck's Radiation Formula.

521. According to Planck's theory, the form of the function /is given by

/(^) =^ (10^^)'

where x stands for k/RT\, and k is an entirely new physical constant, to

which no meaning has so far been assigned in terms of the older dynamics.

Thus Planck's complete radiation formula is

JEKd\= ^^^^SirRTX-'dk (1008).

Planck replaces khj hV, where V is the velocity of light, and h is a new

constant commonly called Planck's constant. If v is the number of vibrations

per second of light of wave-length \, so that \ = V/v, the value of x is

^=ik-w (^°«9)-

This formula is found to agree extremely well with experiment*. By
comparison with observation it is of course possible to evaluate the two

constants R and h which are involved in the formula f. As has already

been mentioned (§ 8), the value found for R in this way agrees extremely

well with other determinations, while the value of h is found to be

h = 6'oo X 10~^ erg sees.

522. The simplest way of arriving theoretically at Planck's formula is

perhaps the following.

Suppose that a dynamical system contains a great number of similar

parts or components, each having only one degree of freedom, and having

energy of the form

E = ^{a(l>^ + b(f>'').

These units can clearly describe isochronous vibrations of frequency pj'i'rr,

such that ap^ = 6. The values of
<f>

and (j> for such a vibration will be of

the form

(}> = A cos (pt + T]),
(f)
= — Apam{pt-i-r}) (1010).

From § 105, it appears that the law of distribution of the coordinates

<f>, (f>
will be of the form

Ge-'^^^d<\>d4> (1011).

From equations (1010), it is easily seen that

d<\>d^ = ApdA df} = dEd-qj^ah,

* For fall discussion of the agreement of Planck's formula with experiment, see La Thiorie

du Rayonuement et les Quanta (Gauthier-Villars, Paris, 1912).

t See Bichardson, Electron Theory of Matter, p. 356.

26—2
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so that on integrating with respect to -q, the law of distribution of values of

E is found to be

^'^le-^^^dE (1012).
Nab

Imagine that equal small ranges of energy dE are marked out surrounding

the values E = 0, E—e, E=2e, etc. From formula (1012), the numbers of

units lying inside these ranges will stand in the ratio

1 . g—2Ae . g—4/le • a—&he .

SO that if iV have zero energy, the numbers having energies e, 2e, 3e, . . . will

be Ne~^^\ Ne~^^% .Ne~^'^% etc. The total number of systems under con-

sideration will be

N(l + e-^f'^+e-^h. + g-eh. + ...) =—-^^ (1013),

while the total energy of all the systems is

N{ee-^^ + 2e.e-^'^^ + Se.e-^'^^+...) =
^.^,^^^^^\_.^,^^^,

...(1014).

On division, the mean energy of all the vibrations now under consideration

is seen to be

lif^-'^r ^„ ss^-'R^^^ (1015)

L
\^ry- e^^^-l e^-l

^^"^
. \ b^'^' where x stands for e/RT.

523. If all values were possible for the energies of the units, the mean

energy would, from the theorem of equipartition of energy, be RT. But

when the energies are limited to the small equal ranges surrounding the

values ^ = 0, e, 2e, ... , we have found that the mean energy is only equal

to xi{e^ — 1) times the equipartition value. This multiplying factor is, how-

ever, exactly of the form demanded by Planck's formula (cf equation (1007)).

To make the formulae agree completely the two values of x must be the

same in equations (1007) and (1015), and this requires that

€ = hv (1016).

This last equation may be regarded as the fundamental equation of

Planck's theory. The quantity e measures the " quantum " of energy of

frequency v.

524. In the foregoing analysis, it has not been necessary to specify the

nature of the units under consideration.

Planck's original method* was to suppose that in all matter there were

a great number of " resonators " of every possible period. The mean energy

of any resonator of a definite frequency v is supposed to be that expressed

by formula (1015), so that the mean value of its kinetic energy ^a(j)^ is equal

* Aim. d. Physik, iv. (1901), p. 556.
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to half this, and on inserting this value into equation (995) of the last

chapter, we obtain, in place of equation (998),

E^d\=^^'irRT\-*-;^^ d\ (1017),

which is Planck's formula.

This method of Planck's is certainly open to grave objections. For in

arriving at formula (1015) it has been assumed that the energy of a resonator

is limited to one of the values 0, e, 2e, ..., whereas in arriving at equation

(995) it was supposed that the energy could, and did, vary continuously.

525. An alternative way of interpreting the analysis of § 522 is to

suppose that the vibrations there considered are the vibrations of the ether

itself. The number of vibrations per unit volume within a range d\ of

wave-length is, from §500, equal to >iTrX~'^d\; the mean energy of each of

these vibrations is that given by formula (1015), and on multiplication we

arrive directly at formula (1017) for the partition of energy in the ether.

With respect to this way of regarding the problem, it is to be noticed

that the ether itself provides no mechanism for the interchange of energy

between vibrations of different wave-lengths. This interchange can only

occur through the intermediary agency of some kind of matter, and we are

led to contemplate interchanges of energy between matter and ether taking

place only by units of amount e. This in turn requires us to suppose that

radiation travels through the ether, tied up, so to speak, in bundles of

amount e, or that when it does not, no interaction between ether and matter

can take place, a supposition which seems to be contradicted by most of the

facts of the undulatory theory of light.

526. Before discussing these or other physical interpretations of the

quantum-theory, it will be convenient to consider another problem. We
have seen that two physical schemes (§§ 524, 525) can lead to the equations

of the quantum-theory, but neither of these schemes appears, at first

sight at least, to be of great plausibility. The question arises whether

schemes of this somewhat revolutionary kind are necessary to explain the

facts of radiation, or whether some simpler physical scheme, more in keeping

with our well-established conceptions of physics, cannot be found to lead

to the same result as the quantum-theory. We may in fact attack the

converse problem : Given the observed laws of radiation, what systems of

dynamics must be postulated in order to obtain these laws ?

527. Let us return to the investigation of Chapter V (§ 78 et seq.), and

examine to what extent it must be modified when the classical laws of

mechanics are no longer supposed to hold.

The first step in the argument consisted in shewing (§ 85) that for a

conservative system the swarm of representative points in the generalised
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space moved without any concentration taking place : the density of any

part of the swarm remained perpetually the same.

When the classical laws are abandoned, this conclusion can no longer be

regarded as established. And so long as the actual laws are unknown the

exact modification required cannot be ascertained.

It is, however, clear that the motion of the system under consideration

must obey some law of determinism : if a state A is on one occasion suc-

ceeded by a state B then the state A must always be succeeded by the

state B. If this were not so, exactly similar experiments would not invariably

lead to exactly similar results, and the uniformity of nature would disappear.

The moving representative points in the generalised space must accordingly

be supposed to follow definite tracks through this space. This being so, it

will be possible to arrange the density of the initial swarm of particles in

such a way that the density at any point of the space remains always the

same. In Chapter V we had -j7=0 and 7^ = throughout the space, the

former being a matter of arrangement, and the latter a consequence of our

dynamical equations. In the present problem we can only arrange for the

former equation to be true. This introduces the simplification that we need

only consider one permanent swarm of points ; the density varies at different

points of the space, but does not vary with the time.

If the density of this swarm varied only by a finite amount from point to

point, we should still be led to the theorem of equipartition of energy, and

consequently to the radiation formula (999). For we have seen that equi-

partition of energy holds at every point of the generalised space except for

small infinitesimal regions. It follows that the only way of escaping the

equipartition formula is by supposing that the density of the swarm of

representative points is zero at every point throughout the whole of the

generalised space, except for small infinitesimal regions Ri, R^, ... in which

equipartition does not hold, and at these there may be dense swarms of

points. Further, in order to satisfy the hydrodynamical equation of con-

tinuity in the generalised space zero density must be associated with infinite

velocity, so that the motion of the representative points must consist of

sudden jumps from one of the regions Ri, R^... to another.

In this way it appears that in seeking to avoid the equipartition formula

(999), we are inevitably led to contemplate motion involving discontinuities

of some kind*. We may next consider what special type of discontinuities

must be postulated in order to arrive at Planck's law.

528. Let us return to the analysis given in §§ 91—98 of Chapter V, and

suppose that Ei is the energy of M vibrations each of frequency v vibrations

* See on this subject a very important paper by Poincar^, Journ. de Fhys. [5] ii. p. 5 (1912),

and the same author's Dernieres Pensees, Ch. vi, "L'hypoth^se des Quanta."



527, 528] Planck's Formula 407

per second. According to Planck's formula, the value of E^ must be

given by

^1 = -^ ,

where €=hv, and on solving for T we obtain

^ = f>oKi-t)-; «
In equations (174) and (157) we had the relations

jL = _|_,og^.(^,) = _|logM^, (1019>-

and these equations may be considered to be independent of any special

system of dynamical laws if W is taken to represent, not the volume of the

generalised space in which a certain partition of energy holds, but the total

number of representative points in the space for which this partition holds.

Comparing equations (1018) and (1019), we obtain

giving on integration

log F, (E,) =(m-\- ^) log (^ + y ) - ^ log ^' + cons. . . .(1020).

If we write P for EJe, and use Stirling's formula (69), this equation becomes

F, (E,) = ^^^ ^-^^

'

X a constant (1021).

But (M+ P) l/P ! is the number of ways in which P similar articles can

be put into M similar pigeon-holes, or, more appropriately for our present

investigation, is the number of ways in which P similar and indivisible units

of energy can be distributed among M different similar vibrations. Since

formula (1021) gives the only possible value for F^ (Ei), it appears that

Planck's formula can only be obtained by supposing that the total energy E^

is made up of P similar indivisible units of energy, and that these are

distributed indifferently between the M vibrations. Since P stands for E^/e,

the unit of energy is

Thus we see that Planck's formula can only be arrived at by hypotheses

which must be essentially identical with those already made in § 523. In

the generalised space there are no representative points except in isolated

regions which are such that the energy of every vibration is a multiple of h

times its frequency. In the physical system the energy of each vibration

must remain the same, and equal to a multiple of hv, until a sudden cataclysm

of some kind results in a change by an amount which again must be a

multiple of hv.
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Numerical Values.

529. Before discussing the physical aspects of this remarkable theory,

we may attempt, with the help of numerical data, to form some estimate of

the magnitude of the unit of energy e.

The value of Planck's constant h has been seen to be 6*59 x 10~^ erg sees.,

while the value of v for yellow light (Di or Dg) is 5"01 x 10". Thus for the

unit of energy appropriate to light of this colour, we have

e = Ay = 3-28x10-

This may be compared with other amounts of energy met with in the

Theory of Gases. In § 166 we found that at 0° C. the energy of translation

of a molecule or atom (aTo) is 5oS x 10"^* ergs, so that the quantum e for

yellow light is about equal to the energy of translation of 60 atoms or

molecules at 0° C. In accordance with Wien's displacement law, the value

of X, say X,„, for which E^ is a maximum, varies inversely as the temperature.

Thus Xm.T is a constant, and the value of this constant is found to be

0'294 cm. deg.* The energy in a quantum of radiation of wave-length X,n is

e = hv=^ = 6-G8xW-'^T.

The energy per atom of the solid at temperature T is however ^RT or

404 X 10-^® T. Thus the quantum of light of any colour is equal to 1*65 times

the energy of an atom of the solid at the temperature corresponding to this

radiation (or, very approximately, to the energy of a molecule of a diatomic

gas at this temperature).

530. According to the classical mechanics, the chance of a system

possessing no energy at all is an infinitesimal one.

According to Planck's system, we saw in § 516 that out of a number

N
1 — e-'^^'

of vibrations, N must be supposed to possess no energy at all. The number

which possess some energy must accordingly be

l-e-2'»*'

which is only a fraction e~~^' of the total number.

If 6 is even moderately large compared with RT, the fraction e-2^« or

g-e/RT ^ju \yQ ygj-y gmall. For instance, for matter at 0° C,

7^2^= 3-69 X 10-'^ ergs;

* Lummer and Pringsheim, Verhand. d. Deutsch. Phys. Gesell. i. (1899), p. 230.
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the quantum for yellow light is 3'28 x 1
0~^^ ergs, so that in this case

€/RT==H9 (about), and e-^-^' = IQ-^'. Thus out of 10«« vibrators at 0° C.

capable of emitting yellow light, only one must be expected to have any

energy, while it further appears from § 516, that the odds are 10*'-* to 1 that

this one will only have one quantum of energy.

Corresponding to radiation of the wave-length X^, the quantum is found

to be
6 = 4>9e5RT,

so that even as regards vibrations of wave-length X^ at any temperature,

only one in e*'^\ roughly 1 in 140, of the vibrations will have any energy.

And of those vibrations which do possess energy, only about 1 in 140 will

possess more than one quantum.

Physical Phenomena.

Physical basis for the Quantum-theory.

531. It has already been explained (§§ 524, 525) that there are two ways

of providing a physical basis for the quantum-theory; the discussion of

§§ 527, 528 makes it difficult to find any other way essentially different from

these two.

According to one view, the ether must be regarded as possessing so much
substantiality that it forms an essential part of every dynamical system

which is capable of emitting or absorbing radiation. The energy of this

part of the system must then, in accordance with the result of § 528, be

supposed to fall into quanta, so that we are led to the theory of "light-

quanta" first put forward by Einstein*. According to this view, radiation

must consist of indivisible bundles or " atoms " of monochromatic light, the

energy of each bundle of light of frequency v vibrations per second

being hv.

According to the other view, on which the original theory of Planck was

based, the ether has not sufficient substantiality for its energy to be discussed

in this way ; it serves as a medium for the transfer of energy from one part

of a material system to another rather than as itself being a receptacle for

energ}^ Those who hold this view find it as much a misuse of terms to

speak of the " energy of the ether " as it would be to speak of the eloquence

of a telephone wire. And they can claim that every success of the theory of

relativity strengthens their case.

The two views lead to a real difference of beliefs as to the physical facts

and the processes taking place. According to the first view, a quantum of

energy set free in the ether must move through the ether as an indivisible

* Am. d. Phijsik, xvii. (1905), p. 132, xx. (1906), p. 199, and xxn. (1907), p. 180.
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unit, until it is reabsorbed entire by some material system, while, according

to the second view, it will spread out through the whole of space as directed

by the ordinary equations of the undulatory theory of light, only such parts

being reabsorbed as happen to fall directly upon matter.

532. It might naturally be expected that experiment could immediately

decide between two views in such sharp contrast as these are. In point of

fact, however, experimental evidence is strangely contradictory, so that the

question has still to remain to a large extent an open one.

Against the view that radiation travels through the ether in indivisible

quanta must be set practically all the evidence of the undulatory theory of

light and, in particular, that of the phenomena of diffraction and inter-

ference. If light-quanta were strictly indivisible, interference could not be

obtained by splitting up a quantum into two beams : it could only occur at a

point at which two or more quanta happened to exist simultaneously. The
fainter the light in any experiment, the smaller the chance would be of two

quanta coexisting in this way, so that if the light were sufficiently reduced

in intensity the whole interference phenomenon ought to disappear. That

this does. not happen has been shewn by Taylor*, who reduced the intensity

of illumination until an exposure of 2000 hours was necessary to affect a

sensitive plate, and yet obtained photographs of diffraction patterns in which

light and dark bands alternated with undiminished clearness. A simple

calculation shews that, if light had existed only in indivisible quanta,

no interference at all ought to have been observed in this experiment.

More evidence, equally adverse to the theory of light-quanta, can be

obtained by considering what would have to be the size in space of

light-quanta. It is possible to obtain interference over a path-difference

equal to about a million wave-lengths, and this can hardly be interpreted

except as meaning that a light-quantum must have a length in space

comparable with a million wave-lengths, a length therefore of several feet.

But it is hard to see how a quantum so long as this can be indivisible.

Again, a telescope with a five-foot object-glass is found to have a greater

resolving power than one with a five-inch object-glass. This, on the light-

quantum theory, can only mean that the incident light-quanta must in some

way be spread over the whole object-glass of the five-foot telescope. But

it is difficult to think of quanta of five-foot cross-section as indivisible,

and if they were, it is hard to see how any light at all could get into a

five-inch telescope. If light-quanta were small and concentrated, the only

difference in definition between a large and a small telescope would arise

from the large telescope collecting more quanta than the small one. It

would therefore shew itself as a mere difference in intensity, and a small

* Proc. Cavil). Phil. Soc. xv. (1909), p. 114.
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telescope would resolve a pair of bright stars just as well as a large

telescope would resolve an equally close pair of faint stars*. This is of

course quite contrary to observation.

533. All this evidence seems conclusive against a theory of light-

quanta, and yet there is equally conclusive evidence on the other side.

For instance, in the photo-electric phenomenon, light of a suitable frequency

is found to be capable of discharging negative electrons from metals, no

matter how feeble the intensity of the light may bef. The light may be so

feeble that it would have to fall for hours on an atom before the atom could

have absorbed sufficient energy to detach an electron, and yet the moment
light of this feeble intensity is turned on to a metallic surface, the photo-

electric effect is found to commence. It is impossible to understand this

except by supposing that the light is in some way tied up in very concen-

trated packets +.

A similar phenomenon is observed in connection with the ionisation of

gases by Rontgen radiation §.

Still more convincing evidence is obtained from the photo-electric pheno-

menon when the frequency of the light is taken into consideration. For red

light, no matter how intense or long-continued, will not effect any ionisation

at all, while ultra-violet light, even if of the feeblest intensity, results at

once in the discharge of electrons. It appears as though a large packet of

energy is required to break up an atom, and the packets of energy which

constitute red light are not of sufficient power.

This evidence may not be thought sufficient to dispose of all the con-

flicting evidence from the phenomena of interference, diffraction, etc., but it

will at least indicate that the photo-electric phenomenon is worth studying

more in detail, and this we now proceed to do, looking out especially for the

connection between this phenomenon and the quantum-theory.

* These instanceR, and many others of an equally forcible nature, are given by Lorentz {Phys.

Zeitschrift, xi. (1910), p. 349) ; see also British Association Report, Birmingham (1913), p. 376.

t For a summary of the facts, see Hughes, Photo-Electricity (1914), or Campbell's Modern

Electrical Theory (2nd Edition, 1913).

X Alternative explanations have been offered—and usually subsequently withdrawn. Lenard

suggested an explanation in terms of "trigger-action" (Ann. d. Phys. viii. (1902), p. 149), but

has since admitted its unsatisfactoriness (see llamsauer, Phys. Zeit. xii. (1911), p. 997). Cf.

J. H. Jeans, Report on Radiation and the Quantum-Theory, Chap. v.

§ See J. J. Thomson, Electricity and Matter, p. 63. It will be remembered that, before the

advent of the light-quantum theory, this phenomenon led Sir J. J. Thomson to consider the

possibility of a wave-front having a structure, the active parts being, as it were, bright specks of

very great intensity on a dark ground, and the dark parts being comparatively inert and actionless

(I.e. pp. 63, 65). This obviously brings us to something very similar to the theory of light-

quanta. See also J. H. Jeans, Report on Radiation and the Quantum-Theory, p. 85.
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The Plioto-Electric Phenomenon.

534. Since the early experiments of Hertz it has been known that the

incidence of high-frequency light on the surface of a conductor results in its

acquiring a positive charge if it was originally uncharged, or losing a negative

charge if it originally had one. These phenomena are now known to be

caused by the emission of negative electrons from the metal, the electrons

being in some way set free by the incidence of the light.

In any one experiment, the velocities with which the electrons leave the

metal are observed to have all values from zero to a certain clearly-defined

maximum velocity v, the value of v depending on the conditions of the

particular experiment. This can be naturally interpreted as meaning that

in any one experiment, all the electrons are ejected out of their atoms with the

same velocity v, but those which come from some distance below the surface

lose part of their velocity in fighting their way out.

It appears to be a general law that the maximum velocity v of the

discharged electrons does not depend on the temperature* of the metal, or

on the intensity of the incident light t, but solely on the nature of the metal

and on the frequency of the light. For a given metal it is found that the

velocity v increases as the frequency of the incident light is increased,

but there is a critical frequency vg below which the action does not occur

at all. For any frequency v above this, the velocity v is found to be

given by J

^mv' = k{v-Vo) (1022).

An equation of this form was first suggested by Einstein §, as being the

equation which ought to connect h and v on the hypothesis of light-quanta.

Making the simplest assumptions possible, it is clear that the kinetic energy

^mv^ of the projected electron ought to be equal to the energy of the radiation

absorbed minus the work required to take the electron out of the field of

force of its atom. The former amount of energy ought, on the light-quantum

theory, to be hv, while the latter is of course eV, where V is the ionisation

potential of the substance in question. Thus v and v ought, on these very

simple assumptions, to be connected by an equation of the form of (1022) in

which k ought to be equal to h, and kug to eV.

* Ladenburg, Verhand. d. Deutsch. Pliys. Gesell. ix. (1907j, p. 165 ; Lienhop, Ann. d. Fhi/s.

XXI. (1906), p. 281.

t Lenard, Ann. d. Phys. viii. (1902), p. 149 ; Pohl and Pringsheim, Verhand. d. Deutsch. Phys.

Oesell. XV. (1912), p. 974.

X See in particular, A. LI. Hughes, Phil. Trans. 212, A (1912), p. 205, and Richardson and

Compton, Phil. May. xxiv. (1912), p. 575.

§ Ann. d. Phys. xxvii. (1905), p 146.
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535. The following table gives some values found by Hughes * for k and

for Fo (= kvo/e), these being obtained by comparing equation (1022) with

experimental determinations of w.

Element k ".=!' Element A;

Ca

Mg

Cd

Za

Pb

4-91 X 10-27

5-24

5-67

5-88

5-50

2-57 volts

3-08 „

3-49 „

3-77 „

3-42 „

Bi

Sb

As

Se

O2
1

5-63x10-27

5-72

5-7

3-37 volts

3-60 „

4-5 „

4-8 „

8-0 „

These values of Vq are at once seen to be at least of the same order as the

known ionisation potentials, that for oxygen for instance being 8*0 volts as

against a known ionisation potential of 8*1 volts, while the values of A; are all

of the same order of magnitude as Planck's constant h= Q'55 x 10~".

In some more recent experiments, Millikan finds the following values

for k:

from sodiumf, k= &561 x lO"^''^

from lithium+, A; = 6-585 x 10"^

values which will be seen to agree extraordinarily well with other determina-

tions of h.

Thus the photo-electric phenomenon appears to provide the strongest

possible evidence for the view that Planck's quanta have a real physical

existence, and are not mere mathematical fictions introduced to explain an

otherwise inexplicable radiation formula.

Bohr's theory of Line Spectra.

536. Dr N. Bohr§, following a line of thought first opened up by

J. W. Nicholson I!, has put forward a theory of line-spectra according to

which the emission of a line-spectrum is evidence of a phenomenon which is,

roughly speaking, the converse of the photo-electric phenomenon. If the

absorption of a quantum of energy of frequency v results in the ejection of

an electron from its orbit with a velocity v, then the consequence of an

* Phil. Trans. 212, A (1912), p. 225.

t Phys. Review, 4 (1914), p. 73. Millikan assumes the value e = 4-774 x IQ-io.

X Phys. Review, 6 (1915), p. 55.

§ Phil. Mag. xxvi. (1913), pp. 1, 476 and 857, and later papers also in the Phil. Mag.

II
Monthly Notices of the R.A.S., various papers from 1912 to 1914.
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electron falling with initial velocity v into an atomic orbit may be expected

to be the emission of a quantum of radiation of frequency v. This, however,

will by itself not explain the emission of isolated lines, for v can vary

continuously, and so v also ought to vary continuously. Bohr's theory

accordingly finds it necessary to introduce a number of new additional

hypotheses.

537. Bohr's theory is based on the Rutherford conception of the

structure of the atom, according to which an uncharged atom of hydrogen

consists of an electron of charge — e revolving round a much heavier positive

nucleus of charge + e ; an uncharged atom of helium consists of two electrons

revolving round a positive nucleus of charge + 2e, and so on*. There is an

enormous accumulation of evidence for this view of atomic structure, which,

however, cannot be referred to heref.

The inability of the classical mechanics to explain line-spectra becomes

apparent on fixing our attention on the hydrogen atom. We are at once led

to inquire how the two charges can continually go on rotating round one

another at all : the analysis of § 84 would lead us to expect that the energy

of the system would be continually dissipated by radiation until a state was

reached in which no further radiation was possible, a state, therefore, in

which the two charges had been reduced to rest. Moreover the total number

of degrees of freedom of the two charges is only six, and of these three

represent the freedom of the atom to move in space. Under the classical

mechanics, it seems inconceivable that the remaining three degrees of

freedom could produce the highly complicated line-spectrum of hydrogen.

According to the classical mechanics, an electron of charge — e can

describe a circular orbit of radius a about a heavy nucleus of charge E,

making w revolutions per second, if

27?

^ = ?M (27r(w)2 a (1023).

The potential energy of the electron in its orbit is — eEja, and the kinetic

energy is \m{^'Tra>af, which from equation (1023) is equal to ^eEja. Thus W,

the work required to remove the electron out of its orbit to infinity, will also

be equal to ^eEja.

The classical system of mechanics permits of W having any value from

to 00 . Bohr's primary assumption is that W must be of the form

W=^Th(o (1024),

where t is a positive integer, which may have any value from 1 to oo . This

assumption is not one that can be deduced from the quantum-theory, but

Phil. Mag. xxi. (1911), p. 669, and xxvii. (1914), p. 488.

t See a " Discussion on the Structure of the Atom," Proc. Roy. Soc. Mar. 19, 1914.
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appears to be a plausible extension of that theory*. The quantum-theory

requires that the total energy, potential and kinetic, of a vibration of

frequency w shall be a multiple of hw, while Bohr's assumption is that the

kinetic energy alone of a rotation of frequency w shall be a multiple of ^hco.

Other physical interpretations can be given to Bohr's equation (1024), of

which perhaps the following is the simplest. Equation (1024) requires that

the angular momentum ^irmayCL- or TT/ttq) must be of the form Thj1-rr, and so

is equivalent to requiring that the angular momentum must be atomic, and

occur only in multiples of an " atom " of angular momentum hl'lir, a con-

ception due originally to Nicholson +. Still another physical interpretation of

equation (1024) is suggested by BohrJ.

Bohr's assumption at once prohibits the continuous variation of W, a and

6) which is demanded by the classical mechanics. The possible values of

W, a and to are readily found from equations (1023) and (1024) to be

in which t is restricted to integral values, so that W, a and eo are restricted

to certain definite values. Thus a cannot gradually shrink, but is restricted

to one of the values just found. It follows that there can be no oscillations

of the electron in the plane of the orbit, so that the circumstance discovered

by Nicholson, that such oscillations would be unstable, is no longer an

objection to our present model of atomic structure.

In accordance with Bohr's assumption, the hydrogen atom, for which E = e,

can have the diameter obtained by taking r = 1, namely

2« =2^ (1°26),

but can also have diameters equal to 4, 9, 16, 25 ... times this. The normal

hydrogen atom is that for which the loss of energy W has been greatest, and

so is that for which r = 1. On inserting numerical values in formula (1026)

we find for the normal hydrogen atom a diameter 2a = 1*1 x 10~* cms., which

is at least of the right order of magnitude.

538. We have next to consider what happens when, for reasons not at

present specified, the atom suddenly shrinks from, say, the orbit t = Tj to the

orbit T= Tg. Formulae (1025) shew that the atom must experience a loss of

energy of amount AW given by

Air= Jf,.-F„ = ?3^71-l) (1027).

* See a paper by W. Wilson, Phil. Mag. xxix. (1915), p. 795.

t I.e. ante.

X Phil. Mag. xxvi. (1913), p. 4, last paragraph.
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Bohr supposes that this amount of energy, suddenly set free from the

atom, passes away into space in the form of one quantum of monochromatic

radiation. The frequency of this radiation must, in accordance with Planck's

equation (1016), be determined by ^W = hv, so that v must be given by

"'""Q}-^^ - (^"'')'

where
jy^2^W^'

^^^29).

According to Bohr's theory the frequencies of the different spectral lines

of the element can be obtained by inserting different values of t^ and r^ in

this formula. The lines can be sorted into spectrum series corresponding to

different values of Tg. We may now examine how far this formula is capable

of giving the various observed spectral series.

539. The Hydrogen Spectrum. The hydrogen spectrum is got by

putting E= e, and so assigning to N the value Njj given by

N„^^-^ (1030).

The value r, = 1 gives the series

all the lines of which would lie in the ultra-violet. None of the lines of the

series were known when Bohr's theory was originally published, but the

series has since been discovered by Lyman*.

The value r^ = 2 gives the series

which is the well-known Balmer series.

The value Xg = 3 gives the series

1 1

-^^(9-^J-(^^ = 4,5,6...),

which is the series found by Paschenf in the infra-red. The remaining

series, Tg = 4, 5, 6 . .
.

, would be too far in the infra-red to be observed.

540. The Helium Spectrum. The nuclear charge for helium is E = 2e,

and in the normal uncharged atom there are two electrons revolving round

the nucleus. But when, from ionisation or other cause, the atom loses one of

its electrons, there will, in the remaining positively charged atom, be one

* Nature, xciii. p. 241 (May 7, 1914).

t Ann. d. Phys. xxvii, (1<J08), p. 565.
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electron revolving round a nucleus 2e. The spectrum of the positively

charged helium atom ought accordingly to be obtained on putting E = 2e

in the above formulae. Its frequencies will therefore be given by formula

(1028) if we assign to iV a value iV^^ given by

Nh, = 4>N^ (1031).

Thus the spectral series will be given by the formula

-4^.(4-^.) (1032).

The series Tg = 1 and Xg = 2 are too far in the ultra-violet to be observed.

The series Tg = 3 may be divided into two parts according as Tj is even or odd,

and the two series so obtained have been recently observed by Fowler* in

a mixture of hydrogen and helium, the hydrogen presumably being required

to effect the ionisation of the helium.

The series Xg = 4 may again be regarded as falling into two parts

according as Ti is even or odd, and these two parts give the series

"-^"{l-l^ (1«33),

'"{l-ld^)
<^*'^*>-

(w + i>

The former of these is again the Balmer series, which it now appears can

be emitted by helium as well as by hydrogen ; the latter is the well-known

Pickering series. This was observed by Pickering-f" in the spectrum of the

star ^-Puppis, and was attributed to hydrogen simply on the grounds, now

seen to be inadequate, that the analogous series (1033) was a hydrogen

series.

541. Numerical values. On substituting the known numerical values

for m, e, and h in formula (1030), the value of Njj is found to be 3"26 x 10^',

whereas the observed value is 3'290 x 10^^ These numbers agree to within

the experimental errors involved in the values of e and m.

The value (1030) for iVjy has been obtained only by supposing the mass M
of the hydrogen nucleus to be very great in comparison with m, the mass of

an electron. When the ratio m/M is not neglected, the factor m in formula

(1030) must be replaced by mMI(M + m). A similar correction must be

applied to the formula for Nh^, with the result that the simple formula (1031)

must be replaced by

_4 (i¥-Hm)

^^^-l/+im ^^ ^^^^^^-

• Monthly Notices of the Royal Astron. Soc. lxxii. (1912), p. 62.

t Astiophys. Journ. iv. (1896), p. 369, and v. (1897), p. 92.

J. G. 27
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The value of mjM is known to be about 1835. On substituting this

value, the ratio of Nh, to Nh given by formula (1035) is 4-001635, while the

value observed spectroscopically is 4-001632*.

542. Absorption Spectra. On this theory the absorption spectrum of a

gas admits of a very simple interpretation. In an inert gas the vast majority

of the atoms will be in the state r = 1. If radiation is supposed to pass

through this gas in complete quanta, a quantum can be absorbed only if

it is either just adequate to move the electron into some other orbit Tj or

else to set the electron free altogether. Thus the absorption spectrum will

consist simply of the series t2 = 1 in formula (1028) together with a con-

tinuous absorption band running upwards from the head (tj = oo ) of this

series. The range covered by this band is exactly that for which the photo-

electric effect occurs, and the presence of absorption shewn by this band

would, on Bohr's theory, be evidence of the actual occurrence of photo-electric

action.

R. W. Woodf has studied the absorption spectrum of sodium vapour,

and has found it to be of exactly the type demanded by Bohr's theory. Fifty

lines were observed in the absorption spectrum, their positions agreeing

exactly with those of the principal sodium series, and in addition there was

found to be a continuous absorption band beginning at the head of this

series and extending to the extreme ultra-violet.

543. It would not be in keeping with the plan of this book to go

further into the details and difficulties of this or other theories. Enough
evidence has been brought forward to shew that the hypothesis of light-

quanta shews a very remarkable power of interpreting certain phenomena,

which seem almost to defy interpretation in any other way. But this

hypothesis certainly is not easy to reconcile with the observed and well-

established facts of the undulatory theory of light.

Specific Heats.

544. Whether Bohr's theory be accepted in its entirety or not, the

short account just given will at least have served to establish one result,

namely, that the quantum-theory makes it possible for the internal energy

of an atom to be entirely independent of the temperature of the gas to

which. the atom belongs. Any such independence, it need hardly be re-

marked, would be entirely at variance with the principles of the classical

system of mechanics. There is, however, an overwhelming mass of evidence

that such independence actually exists, perhaps the most convincing piece

of evidence being that provided by the phenomenon of radioactivity. It is

* Fowler, Phil. Tram. A, 214 (1914), p. 258.

t Physical Optics (11)11), p. 513, or Bohr, I.e. p. 17.
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known beyond question that the radioactive process consists of a series of

atomic disintegrations, so that the process would necessarily be influenced

by changes in the internal energy of the atom, should any such occur.

Thus if a rise of temperature produced a change in the internal energy of

the atom this change would almost certainly shew itself in a change in the

rate of the radioactive processes. Yet these processes are found to go on at

a steady rate which is perfectly uninfluenced by changes of temperature.

Just as many atomic explosions are found to occur at 5° abs. as at 500° C,

from which we may infer that the internal atomic energy is not altered by

the transition from one of these temperatures to the other.

It follows that the internal energy of the atom cannot enter into the

specific heats, so that so far as evaluations of the specific heat are concerned,

the atoms may be thought of as rigid bodies.

The quantum-theory has also a suggestion to make on the subject of the

rotational energies of molecules and atoms.

The energy of an atom or molecule of mass m rotating with an angular

velocity H is i^mk^H^, where k is the radius of gyration. According to the

classical mechanics, the average value of this energy ought to be ^-RT

or ImC"^, so that Xl would be of the order of magnitude of Cjk. If G for

an average molecule is taken to be 10^ cms. per sec, and k is assumed to

be 10~^ cms., we find that H is of the order of 10^1 For an atom,- k must

be very much less than 10~* cms. For instance in the normal (uncharged)

helium atom, it is believed that all except about 1/3600th of the total mass

is concentrated in the very small central nucleus, so that k will only be about

one-sixtieth of the radius of the atom, and fl would, according to the classical

mechanics, be of the order of 10". These values of 11 are, however, so large

that the quantum-theory does not permit of rotations of this frequency having

the energy assigned to them by the classical mechanics. The energy of a

rapid rotation will probably, like the energy of a rapid vibration, be much

less than \RT. Hence it may result that the energy of rotation may not

figure in the specific heats at all.

The Specific heats of a Gas.

545. It will now be found that a good many of .the difficulties we have

encountered in connection with the specific heats of a gas can be cleared

away with the help of the new conceptions which the quantum-theory has

placed at our disposal.

546. Monatomic Gases. We have found reasons for treating the atoms

as having no variable internal energy at all, and the calculation just sketched

out makes it at least probable that the rotational energy will be insignificant.

Thus we naturally expect that the value of /S (§ 261) for all monatomic gases

27—2
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will be found to vanish, and the ratio of the specific heats be If , in accordance

with experiment.

547. Diatomic Gases. A diatomic molecule, regarded as two points,

will possess six degrees of freedom in all. Three of these will represent

freedom of translation in space, so that the internal energy will have only

three degrees of freedom, two of these degrees arising from rotation, and

one from the freedom of the atoms to change their distance apart by a

vibration along the line joining them.

The two rotational degrees of freedom are each represented by one

squared term in the internal energy, while the vibrational degree of freedom

will be represented by two squared terms. There will therefore be four

squared terms in the internal energy of a diatomic molecule.

The general value of the ratio of the specific heats for the lighter of the

diatomic gases is 7 = 1|, indicating that only two of these squared terms add

effectively to the total energy. The question of which two out of the four are

concerned is a rather difficult one.

The brief calculation of § 544 made it appear very probable that the

rotational energy of an ordinary diatomic molecule would be less than that

predicted by the older mechanics. The value of 11 predicted by the classical

mechanics was, however, seen to be smallest for large and heavy molecules, so

that we should expect the rotational energy to be least for the light molecules

and to increase as we passed to heavier and larger ones. As a matter of

observation, it is found that the value of /3 is hardly altered on passing from

hydrogen to the heavier and larger molecules of Ng, Og, CO, etc. The most

plausible inference seems to be that for molecules as light as these the

rotational energy is uniformly negligible. The value of yS for all these gases

is almost exactly |, and the corresponding energy is naturally thought of as

residing in the vibration formed by the motion of the two atoms along the

line joining them.

Accepting this supposition, it is easy to obtain a formula giving the

variation of the specific heats with the temperature for gases in which the

rotational energy of the molecules is negligible. For, if v is the frequency

of the vibration of the two atoms relatively to one another, the value of E,

the average total energy of a molecule, will be

^=i«^+ w^ <i«3«)'

e ' - 1

and the specific heat at constant pressure will be (cf § 259)

R 1 dE
J m, Jm CtJ-

R hvjRT
/lw\

i^l^^uTZYyiwr)]
('"^^>-
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Clearly the value of Cp will vary continuously from ^R/J^i at very high

temperatures to ^R/Jm, the value for a monatomic gas, at very low tem-

peratures. This gives a simple interpretation to the observed variations in

the specific heats of air, H2, etc. and at once explains the striking result of

Eucken already refeiTed to in § 274.

At the same time it must not be overlooked that the specific heats of

some diatomic gases* (e.g. CI2, 63,12, BI, ClI) seem to indicate more internal

energy than can be altogether accounted for in this way. These gases are,

however, exactly those in which the molecules are large and heavy, and the

increase observed in the value of yS for these gases is accordingly a confirma-

tion of our supposition. The material given in Chapter VII shews that the

value of n, which is equal to 2 for Hg, O2, Ng, etc., rises to 3 for CI2 and to

3"8 for B2 and I2. For an infinitely heavy diatomic molecule the value of n

might of course be expected to be 4.

548. Polyatomic Gases. A molecule constituted of p point atoms will

have Sp degrees of freedom, of which three will represent freedom of

translation in space, and three will represent freedom of rotation. Rejecting

these, there remain Sp — 6 degrees of vibrational freedom, each contributing

two squared terms to the internal energy of the molecule. Treating this

energy in the same way as the energy of a diatomic gas, we find that the

2
ratio of the specific heats of a j9-atomic gas ought to vary from 7 = 1+ — ^

at high temperatures to 7 = If at low temperatures. For a triatomic gas

the limits ought to be 1| and If,

Specific Heats of Solids.

549. Let one gramme of any element in the solid state be supposed to

contain iV atoms, each of mass m, so that Nm =1. If these atoms are, as

before, regarded as points, the solid will have SN degrees of freedom per

gramme. Every possible displacement of the solid will alter the potential

energy, so that each degree of freedom will have potential as well as kinetic

energy associated with it, and the energy of one gramme of the solid will

consist of 6N squared terms.

According to the classical mechanics, the energy of these terms will

be ^NRT, and we obtain as the specific heat of the substance at constant

volume

C, =j^{SNRT)^^ ^^^^^>-

Hence, since Nrn = 1,

mG, =~ (1039),

Cf. §§ 276, 268.
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which is constant. Let m^ denote the mass of the hydrogen atom, then mlm}^
is the atomic weight of the element under consideration, and

mn J TTih

on inserting the value R/mh = 8*254 from the table on p, 131. If a is the

atomic weight measured from the standard = 16, the relation becomes

aC^ = 5-96.

This expresses the law of Dulong and Petit, that the product of the atomic

weight of an element and its specific heat is constant.

550. In a solid just as in a gas a distinction must be drawn between the

specific heat at constant volume and that at constant pressure, the difference

between the two depending on the amount of work required to compress

the heated solid back to the volume it originally occupied. When deter-

minations of specific heat are corrected so as to refer to constant volume, the

product aC^ is found to be very nearly constant at high temperatures, and to

have almost exactly the value 5'96 predicted by theory*.

Although the atomic heat aC^ is found to be consistently equal to 5*96

at high temperatures, a very remarkable falling off" has been discovered at

low temperatures, so that aC^ must be thought of as a function of the

temperature. This is exactly what we should expect on the quantum-theory.

The following investigation of the value of the atomic heat as a function of

the temperature has been given by Debyef, and we shall find that the results

obtained agree very closely with experiment.

Debyes Theory of Specific Heat.

551. The unit mass of solid containing N atoms must, as we have seen,

possess 3iV degrees of freedom, and therefore 3iV independent vibrations.

These vibrations may be regarded as different wave-motions in the solid, and

so may be classified according to frequency by the method already used in

the last chapter. Writing v for the frequency {v = pj^ir), the number of

vibrations in a volume V having frequencies within a range dv will be

(cf. § 500)

V2i3
+ ^3)^=«-l^(24r» + ^>^^^ (1040).

p^dp /

Clearly if we supposed that v could have all values from to 00 , the total

number of vibrations would be infinite, whereas it is known to be 3iV". Just

* See Nernst and Lindemann, Zeits. fiir Elektrochemie, 1911, p. 817, also Nernst, Ann. d.

Phys. XXXVI. (1911), p. 395. and a report in La Theorie dn Rayonnement et les Quanta, p. 254.

t Ann. d. Phys. xxxix. (1912), p. 789.
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as in § 506, there is a limit set to v by the coarse-grained structure of the

medium, and, following Debye, we may make a simplifying assumption similar

to that already made in § 506. We assume that formula (1040) gives the

number of vibrations accurately from i/ = up to a limit v^, which is deter-

mined by the condition that the total number of vibrations within this range

shall be equal to the required total number 3iV; there are supposed to

be no vibrations of frequency greater than Vm- The equation giving Vm is

accordingly

S-*^ (251+5:3)^" = ^^ <io«>-

Here a^, a^ are the velocities of compressional and distortional waves in

the solid, and so are known in terms of the elastic constants of the sub-

stance, while V= \jp and N= l/m. It is therefore possible to calculate v^ for

any substance from its elastic constants.

According to the quantum-theory, the average energy of each of the

vibrations of frequency v which are enumerated in expression (1041) must not

be supposed to be RT, but
hv

hv

eiiT-l

The total energy E of the SN vibrations of a gramme of the substance is

accordingly

2ai» 02'

or, using relation (1041),

E^QNJ-^^^-, (1042).
hi/ dv

RT.

552. For large values of T, this value of E becomes SNRT, as in the

classical mechanics. In general, the integral cannot be evaluated in finite

terms.

The specific heat at any temperature T is

l^dE
^"'JdT'

and from the form of the integral E it is clear that dE/dT must be of

the form

,rt)'
SNRf

(^

where / is a function of hvmjRT which is of the same form for all substances.

The value of dE/dT, evaluated according to the classical mechanics, is 3NR,
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so that the multiplying factor / represents the correction required by the

quantum-theory. We may write % for hv^/R, so that is a characteristic

temperature associated with each substance. We then find that

C^ —
SRJS

J ^V©.

and the atomic heat at any temperature T is given by

'6^
aC, = 5-96/(^) (1043).

Details of the evaluation and computation of the function/ will b^ found

in Debye's paper*. The following table gives the values found for the

/©^
function / ( ™

T
e ^(1)

T
e ^(1)

T
e ^(1)

00 1-000 •8 •926 •20 •369

4 •997 •7 •904 •15 •213

3 •994 •6 •872 •10 •0758

2 •988 •5 •825 •075 •0328

1-5 •978 •4 •745 •050 •00974

1-0 •952 •3 •607 •025 •00122

•9 •941 •25 •503 •000 •000

553. Comparison with Experiment. In fig. 27, the curve gives the

theoretical value of y (-™
J

, while the marks +, o and x shew values of this

function derived from the observed specific heats of aluminium, copper and

silver respectively.

In these comparisons between theory and experiment, @ has been supposed

to be an adjustable constant, and that value has been assigned to @
which makes the observations fit the curve most closely. We may refer to

this value of © as the observed value of 0. The value of ©, or hv^JR, can

however be calculated directly from the elastic constants, so that it is of

interest to examine how closely the two sets of values agree. The following

table* gives the observed values of © as used by Debye and also the values

calculated from the elastic constants

:

I.e. p. 812.
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r/©=-i

Element 9 (observed) 9 (calculated)

Aluminium

Copper

Silver

Lead

396

309

215

95

399

329

212

72

^

y'
^"^

/
/

/ oCop

X Sil\

minium

per

/
'er

/
/

r
•

/
/

J r

10 M 1-2 1-3 1-4

Fig. 27.

Extensions of Debyes Theo7'y.

554. The agreement between Debye's theory and experiment has been

seen to be extremely good. It could not reasonably be expected to be perfect,

for the assumption of a sharply-defined maximum frequency Vn,. is obviously

at best a rather rough approximation. Mention must be made of interesting

attempts by Born and Karman* and Thirringf to improve the theory in

this respect. These investigators treat the arrangement of atoms in a

solid as forming a " space-lattice " of the type made familiar by the work

of Bragg on crystal structure. The results obtained in this way shew

* Phys. Zeitschrift, xiii. (1912), p. 1, and xiv. (1913), pp. 15 and 65.

+ Phys. Zeitschrift, xiv. (1913), p. 867.

27—5
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somewhat better agreement with observation than those of Debye, but

the agreement is still by no means perfect.

555. A solid mass of a compound substance cannot be treated as a

collection of similar atoms, but may be thought of as a collection of similar

molecules, each having internal vibrations of the kind already considered in

§ 547. On summing the contributions from the internal vibrations of the

molecules and from the motions of the molecules in the elastic solid waves,

we obtain for the total energy of N molecules of the solid an expression

of the form

E
JO

n hl^

hv p,

dv
4-iV^2

hv^
.(1044).

Here the summation in the second term is over all the internal vibrations

of the molecule. For a diatomic substance, this sum reduces to a single

term. Such a term is commonly referred to as an Einstein-term, because

Einstein at one time put forward a theory that the whole energy of a solid

could be represented by terms of this form.

Nernst has shewn that an expression of the form (1044) leads to

approximately the right values of the specific heats of a number of chemical

compounds. The formula contains no adjustable constants, for v^ can be

calculated from the elastic constants, and i/j is taken by Nernst to be the

frequency of the infra-red absorption band as observed by Rubens. The
following table, selected from a number given by Nernst*, will indicate the

closeness of the agreement of this theory with experiment

:

Values of Wp for KCl.

T
(abs.)

Einstein
term
in 2C„

Debye
term
in 2C„

Correction
term

Calculated

2Cp
Observed

20p

22-8 0-046 1-04 1-086 1-16

26-9 0-13 1-48 1-61 1-52

30-1 0-25 1-87 2-12 1-96

33-7 0-43 2-25 2-68 2-50

48-3 1-43 3-52 4-95 5-70

57-6 2-13 4-06 0-02 6-21 612

70-0 2-89 4-57 0-04 7-50 7-58

86-0 3-66 4-97 0-06 8-79 8-72

235 5-55 5-81 0-32 11-68 11-78

416 5-83 5-91 0-68 12-42 12-72

550 5-87 5-93 0-90 12-70 13-18

Vortrfige ilber die Kinetische Theorie der Materie (1914), p. 81.
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556. The agreement must not be expected to be perfect, for the theory-

is not perfect. The whole assembly of atoms in the solid interact with one

another and we are not entitled to assume that the principal vibrations of

the whole assembly fall into the two sharply divided classes of intra-molecular

and inter-molecular motions. In confirmation of this remark it may be

noticed that, when the various kinds of atoms in the molecule are made to

become all similar, formula (1044) does not become identical with Debye's

expression for the energy of an elementary substance.

When the question is looked at from the point of view of space-lattices,

this difficulty can be avoided. Thirring* has attempted to calculate the

specific heats of compound substances, by supposing the atoms to form

a space-lattice in which two or more different masses alternate. Calcula-

tions are given for NaCl, KC1> CaFg and FeSg; the author finds a mean
error of 2*3 per cent., and a maximum error of 4 per cent., between his theory

and observation.

557. We have now seen that the heat energy of a solid substance may be

thought of as residing in its elastic vibrations, the atoms being treated as the

ultimate particles of the solid, and each vibration having exactly the energy

allotted to it by the quantum-theory. Thus the mean energy of any material

vibration is exactly equal to that of a vibration of the same frequency in the

ether. This was found in § 512 to be the condition, under the old mechanics,

of equilibrium between matter and ether ; it was one of the suppositions on

which Planck's original theory was founded; the evidence of the specific

heats of solids now shews it to be true in actual fact so far as the vibrations

of solids are concerned. i

558. The question suggests itself whether the mean energy of every

material vibration must be put equal to that of the corresponding light-

vibration. For instance, in § 505 we found that the random motions of

molecules in a gas could be analysed into waves of sound in the gas, the

frequencies forming a spectrum of a type similar to that formed by the

elastic vibrations in a solid. The question arises whether these vibrations

ought not to have allotted to them the mean energy predicted by the

quantum-theory rather than the mean energy RT which corresponds to

Maxwell's distribution of velocities. This suggestion has been put forward

by Tetrode f, and some of its consequences have been examined by Keesom;]:,

including especially its effect on the equation of state. If this point of view

is accepted. Maxwell's law of distribution of velocities and the fundamental

bases of the kinetic theory lose all claim to general validity : they must be

* Fhys. Zeitschrift, xv. (1914), p. 180.

t Phys. Zeitschrift, xiv. (1913), p. 212.

t Communications from the Physical Laboratory of Leiden, Suppl. No. 30 (1914).
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relegated to the position of approximations which are true only in certain

limiting conditions. But in a gas at ordinary temperature and pressure

these limiting conditions are very nearly satisfied, at least so far as

concerns the energy of molecular translation : the frequencies of the

sound vibrations are so low that their energy has almost its equipartition

value, Maxwell's law of distribution of velocities is very nearly true, and

formulae based on Maxwell's law of distribution will be very nearly accurate.

For instance, Keesom finds that for helium at 0° C. and at a pressure of

1 atmosphere, there would be a deviation of only 0'12 per cent, from the

pressure calculated from Maxwell's law, while the error in the specific

heats is shewn to be still less.

559. If these ideas can be applied to a gas, they ought also to be

applicable to the quasi-gas formed by the free electrons in a solid*. In this

case, owing to the small mass of the electron, the frequencies of the vibrations

of the medium constituted by the electrons are very high, so that the old

laws of partition of energy will not give anything even approaching a

good approximation to the truth : a better approximation is obtained by

regarding the wave-frequency as infinite, and so disregarding the energy of the

free electrons altogether. To this approximation, we may have as many free

electrons as we please in the solid without adding anything to the specific

heat. It is quite in accord with observation that the energy of free electrons

should add nothing to the specific heat. Nernst and Lindemann find that

the limiting value of the atomic heat has the theoretical value 5"96 for good

and bad conductors equally, while Richterf has specially looked for the

influence of free electrons on the specific heat in a series of Bi — Sn and

.

Bi — Pb alloys, and has failed to find any. Clearly this conception can do

a great deal towards removing the difficulties which have accumulated round

the electron theory of metals (cf § 431) ; whether the theory can be com-

pletely re-established remains to be seen.

* See papers by Keesom, Communications from the Physical Laboratory of Leiden, Suppl.

No. 30 (1914), and F. A. Lindemann, Phil. Mag. xxix. (1915), p. 127.

+ Ann. d. Phys. xxxix. (1912), p. 1590.
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APPENDIX A

INTEGRALS INVOLVING EXPONENTIALS

A TYPE of integral which occurs very frequently in the mathematics necessary to the

Kinetic Theory is

1 ii^e-^''"du (i),

where n is integral. This can be evaluated in finite terms when n is odd, and can be

made to depend on the integral

('' e-"""' du (ii),

J

when n is even. In each case the reduction is most quickly performed by successive

integrations by parts with respect to u^. Tables for the evaluation of the integral (ii) will

be found in Appendix B.

When, as is generally the case, the limits of integration are from u=0 to u= co, the

results of integration are expressed by the formulae

j^u^^e du= 2.+, ^,

Jo

2k+1'

The following cases of the general formulae are of such frequent occurrence that it may
be useful to give the results separately :

Each integral can be obtained by diflFerentiating the one immediately above it with

respect to hm. In this way the system can be extended indefinitely.
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APPENDIX B

The following tables will be found of use for various numerical calculations in con-

nection with the Kinetic Theory. The values of \|a {x) are from a table by Tait in the

paper already referred to (p. 271).

X a;2 e-^
<w J

rP(x)

Defined by equation

(748), p. 270

•1 •01 •99905 •11246 •20066
•2 •04 •96080 •22270 •40531

•3 •09 •91393 •32863 •61784
•4 •16 •85214 •42839 •84200
•5 •25 •77880 •52050 1-08132

•6 •36 •69768 •60386 1-33907

•7 •49 •61263 •67780 1-61819
•8 •64 •52729 •74210 .

1-92132
•9 •81 •44486 •79691 2-25072

1-0 l^OO •36788 •84270 2-60835

1-1 1^21 •29820 •88021 2-99582

1-2 \-AA •23693 •91031 3-41448
1-3 1^69 •18452 •93401 3-86538

1-4 1-96 •14086 •95229 4-34939

1-5 2-25 •10540 •96611 4-86713

1-6 2^56 •07730 •97635 5-41911

1-7 2^89 •05558 •98379 6-00570
1-8 3-24 •03916 •98909 6-62715

1-9 3-61 •02705 •99279 7-28366

2-0 4-00 •01832 •99532 7-97536

2-1 4-41 •01215 •99702 8-70234
2-2 4-84 •00791 •99814 9-46467

2-3 5-29 •00504 •99886 10-26236
2-4 5-76 •00315 •99931 11-09547
2-5 6-25 •00197 •99959 11-96402

2-6 6-76 •00116 •99976 12^86798

2-7 7^29 •00068 •99987 13-80734

2-8 7-84 •00039 •99992 14-78225

2-9 8^41 •00022 •99996 15-79255

3-0 9^00 •00012 •99998 16-83830

^'V , /.i _ L±i-^. )
J [H) rxj , ^

^rr L^^y
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in a steady state, 224,

286



Index of Subjects 433
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size of, 9, Ch. XIV ; see also Size

velocity of, 9, 131

Momentoids, 97
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301, 303, 344
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state, 2, 421, 427
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Sound, propagation of, 199, 374
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